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Executive Summary

Digital computing systems needed for Army programs such as Command and Control (C2)
processing and the Computer-Aided Low Altitude Helicopter Flight Program may be char-
acterized by high computational throughput and input/output bandwidth, hard real-time re-
sponse, high reliability and availability, and maintainability, testability, and producibility
requirements. In addition, such a system should be affordable to produce, procure, main-
tain, and upgrade.

To address these needs the Army Fault Tolerant Architecture (AFTA) is being designed and
constructed under a multi-year program comprising the Conceptual Study, Detailed Design
and Fabrication, and Demonstration and Validation phases. This report describes the results
of the Detailed Design of the AFTA, conducted during Government Fiscal Years (GFYs)
1992 and 1993.

AFTA is a militarized version of the Fault Tolerant Parallel Processor (FTPP) developed by
the Charles Stark Draper Laboratory, Inc. AFTA is superior to existing fault tolerant com-
puter technology in several respects. AFTA is a hard-real-time Byzantine resilient parallel
processor. Due to its Byzantine resilience, it is capable of tolerating arbitrary failure behav-
ior, as opposed to tolerating only a limited class of faults. It is a scalable parallel processor,
which means that processors may be easily added as an application’s performance require-
ments evolve, or as new applications emerge. It supports testability and redundancy man-
agement strategies which permit the dynamic reconfiguration of the parallel processing sites
into redundant groups to enhance sortie availability and mission reliability. This means that
the processing reliability levels can be optimized for given applications to achieve cost-ef-
fective fault tolerance. It is an open system, based on industry hardware and software stan-
dards and composed largely of Non-Developmental Items. This has the benefits of reduc-
ing the cost and risk of development, modification for different missions, and upgrading
existing installations. AFTA’s fault tolerance is transparent to applications programmers,
allowing extensive reuse of existing code as well as simplification of the task of writing
new code. Extensive analytical models and predictive verification and validation techniques
are provided with AFTA to allow application designers to engineer a configuration for spe-
cific missions with a high degree of confidence that the fielded configuration will meet the

mission requirements.

AFTA’s architectural theory of operation, the AFTA hardware architecture and compo-
nents, and the architecture of the AFTA Ada run time system (Ada RTS) were defined
during a Conceptual Study, as well as a test and maintenance strategy for use in fielded
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AFTA installations. A format was developed for representing mission requirements in a
manner suitable for first-order AFTA sizing and analysis. Preliminary requirements were
obtained for two Army missions: a rotary winged aircraft mission and a ground vehicle
mission. An approach to be used in reducing the probability of AFTA failure due to com-
mon-mode faults was developed, as well as analytical models for AFTA performance, reli-
ability, availability, life cycle cost, weight, power, and volume. A plan has been developed
for verifying and validating key AFTA concepts during the Dem/Val phase, especially those
which cannot be cost-effectively validated by accelerated life cycle testing. The analytical
models and partial Army mission requirements developed under the Conceptual Study have
been used to evaluate AFTA configurations for the two selected Army missions. To assist
in documentation and reprocurement of AFTA components, VHDL is used to describe and
design AFTA’s developmental hardware. Finally, the requirements, architecture, and op-
erational theory of the AFTA Fault Tolerant Data Bus were defined and described.

The AFTA program has now completed the Detailed Design Phase. During this phase, the
hardware and software architectures recommended from the Conceptual Study phase were
designed in preparation for Brassboard fabrication in the Fabrication, Integration, and
Validation phase. Using internal Draper funding, an AFTA Brassboard was fabricated.
Under Army funding, the AFTA open systems design philosophy was extended from the
hardware to its operating system and programming languages. Specifically, a commercial
off-the-shelf Portable Operating System Interface (POSIX)-compliant operating system
was ported to the AFTA, and an existing flight-critical Army application was demonstrated
on the AFTA Brassboard. The existing code, which was written for a nonredundant sys-
tem, was ported to the fault tolerant AFTA in under one week.
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1. Introduction

The long-term objective of the AFTA program is to develop and deploy the Army Fault
Tolerant Architecture (AFTA) on a variety of Army programs such as the Rotorcraft Pilot’s
Associate, the Comanche, and Command and Control (C2) applications. Applications such
as these may be characterized by a combination of computational intensiveness, real-time
response requirements, high reliability and availability requirements, maintainability,
testability, and producibility requirements, and sensitivity to life-cycle costs.

The AFTA architecture is based on the Charles Stark Draper Laboratory, Inc. Fault Toler-
ant Parallel Processor (FTPP). AFTA is a real-time computer possessing high reliability,
maintainability, availability, testability, and computational capability. It achieves the first
four properties primarily through adherence to a theoretically rigorous theory of fault toler-
ance known as Byzantine Resilience, through which arbitrary failure modes can be toler-
ated. It is designed for verifiability and quantifiability of key system attributes with a high
degree of confidence, in part due to its theoretically sound basis and in part due to plausible
parameterizations of fault tolerance and Operating System overheads. Through the use of
parallel processing, AFTA provides the throughput for future integrated avionics and con-
trol functions. To be useful for a variety of Army applications, the number and redundancy
level of processing sites in AFTA may be varied from one application to another. Two op-
erating systems have been hosted on AFTA. The first is a dedicated Ada run time system,
and the second is an industry-standard Portable Operating System Interface (POSIX)-
compliant operating system. AFTA is intended to be easy to produce and upgrade through
extensive use of Non Developmental Items and compliance with well-accepted electrical,
mechanical, and functional standards.

Over the past few years NASA and the Strategic Defense Initiative Office (SDIO) have
sponsored the Advanced Information Processing System (AIPS) program at Draper Labo-
ratory. The overall goal of the AIPS program is to produce the knowledgebase necessary to
achieve validated distributed fault tolerant computer system architectures for advanced real-
time aerospace applications [Har91b]. As a part of this effort, an AIPS engineering model
consisting of hardware building blocks such as Fault Tolerant Processors and Inter-
Computer (IC) and Input/Output (I/O) networks and software building blocks such as Lo-
cal System Services, IC and I/O Communications Services was constructed. AFTA can be
considered to be a high-throughput AIPS building block which can be interfaced to the
AIPS IC network. Section 3.7 of the AFTA Conceptual Study describes the AIPS engi-
neering model in more detail and illustrates how it can be interfaced with AFTA.
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The AFTA Detailed Design Phase One Documentation consists of three volumes. Volume
L, “Overview Volume,” contains the program overview and status, updated performance
and reliability models, and a description of the deliverables of this phase of the AFTA de-
velopment. Volume II, “AFTA Software Documentation,” includes the Software
Development Plan (SDP), the Ada RTS Software Requirements Specification (SRS), and a
directory of the files delivered on digitally readable media. Source code listings are pro-
vided for the AFTA Ada Run Time System, the Network Element Simulator, the
Performance Measurement and Data Processing software, the Static Code Execution Time
Analysis software, and the Network Element Self Test software. Volume III, “AFTA
Network Element Hardware Documentation,” contains an updated version of Section 4 of
the Conceptual Study describing the operational overview of the Network Element and a di-
rectory of all files delivered on digitally readable media. Board layouts, schematics,
Programmable Array Logic (PAL) equations, VHSIC Hardware Description Language
(VHDL) source and testbench code, VHDL testbench inputs and outputs, timing diagrams,
microcode, and Field Programmable Gate Array (FPGA) designs are provided for the
Network Element.

Because some readers may wish only to read individual volumes, Volumes I-III may con-
tain some redundant information such as references and a glossary of terms and acronyms.
In addition, in order for this documentation to be relatively self-contained, review material
from the Conceptual Study is incorporated at judicious points.
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2. Program Overview and Status

2.1. AFTA Overview

2.1.1. AFTA Hardware Architecture

The AFTA is based on the Fault Tolerant Parallel Processor (FTPP) architecture developed
by Draper Laboratory. The FTPP architecture was conceived to satisfy the dual require-
ments for a computer system of ultra-high reliability and high throughput. To satisfy the
first requirement, the FTPP is designed to be resilient to Byzantine faults. To satisfy the
throughput requirement, the architecture includes multiple processing elements to provide
parallel processing capability. For a detailed description of the FTPP the reader is referred
to [Abl88], [Bab90a], [Har87], [Har88a], [Har88b], and [Har91a].

The AFTA is composed of Non-Developmental Item (NDI) Processing Elements (PEs), In-
put/Output Controllers (I0Cs), Power Conditioners (PCs), backplane/chassis assemblies,
and specially designed hardware components referred to as Network Elements (NEs).

A diagram of the physical AFTA configuration is shown in Figure 1. The AFTA cluster
consists of 4 or 5 Fault Containment Regions (FCRs). A fault occurring in one FCR can
not cause another FCR to malfunction; this is achieved by providing each FCR with inde-
pendent sources of power, clocking, and dielectric and physical isolation. FCRs reside in
Line Replaceable Units (LRUs). FCRs may either be distributed among several LRUs for
damage tolerance or integrated into a single LRU if damage tolerance is not an issue. Each
FCR contains an NE, 0 to 8 PEs, a PC, and 0 or more IOCs. A minimal AFTA configura-
tion consists of at least four NEs and three PEs; a maximal system would consist of five
NEs and forty PEs. Selection of the number of NEs and PEs for a given application is
made according to performance, reliability, availability, and other engineering require-

ments.

Devices in an FCR are interconnected using one or more standardized backplane buses.
Depending on the procuring organization, this could be the VMEbus, SAVA SBBUS,
Plbus, Futurebus+, or some other bus. The NE’s bus-dependent and bus-independent cir-
cuitry are intentionally partitioned such that changes in the FCR backplane bus only affect
the former, allowing the AFTA concept to transition from one standards suite to another
with minimal hardware redesign.

The NEs provide communication between PEs, keep the FCRs synchronized, maintain data
consensus among FCRs, and provide dielectric isolation between the FCRs via fiber optic
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links. The NE implements the protocol requirements for Byzantine resilience [LSP82]. The
NE is the only developmental hardware item in AFTA. To facilitate its design, simulation,
fabrication, and reprocurement, the NE is described using VHDL.

Each PE consists of a processor, private RAM and ROM, and miscellaneous support de-
vices, such as periodic timer interrupts. The PEs may optionally have private I/O devices,
such as Ethernet, RS-232, etc. The processor may be either a general-purpose processor or
a special-purpose processor for signal or image processing. Multiple processor types may
coexist simultaneously and interoperate in an AFTA implementation.

The I0Cs connect AFTA to the outside world, and can be any module that is compatible
with the FCR standard backplane bus. Interfaces to communication networks such as the
JIAWG HSDB and the AFTA Fault Tolerant Data Bus (FTDB) are also classified as IOCs.
Alternatively, for maximum I/O bandwidth, multiple dedicated I/O buses may be used.
Both options are shown in Figure 1.

To achieve transparent processor reliability, nonredundant PEs are grouped into Virtual
Groups (VGs), depicted in Figures 1 and 2. Byzantine resilient triplexes and quadruplex
VGs consist of three and four PEs, respectively. Virtual groups consisting of only one pro-
cessing site are called simplexes. The ensemble of Network Elements provides a virtual bus
abstraction connecting the VGs. This abstraction conceals the multiple NEs and their inter-
connect, replacing it with a simple bus-oriented abstraction.

As mentioned earlier, two operating systems have currently been hosted on AFTA: a dedi-
cated Ada run time system and an industry-standard POSIX-compliant operating system.
Many of the features outlined in the following section apply equally to both the Ada run
time system and the POSIX-compliant operating system. Details on the status of the
POSIX operating system are provided in Section 5.
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2.1.2. AFTA Ada Run Time System

The foundation of the Ada run time system for the AFTA consists of a vendor-supplied
Ada Run-Time System and Draper-supplied extensions based on recommendations made
by the Ada Run-Time Environment Working Group. Additional features are required to
manage the plurality of AFTA resources in a manner appropriate to the mission require-
ments.

AFTA processing is distributed by task, and intertask communication is provided by mes-
sage passing. High reliability is provided by redundantly executing the tasks on replicated
processors. The AFTA hardware and software have been designed to hide the hardware re-
dundancy, hardware faults, and the distributed processing details from the applications
programmer.

A system configuration specifies the mapping from tasks to VGs and from VGs to proces-
sors. This mapping is maintained by the operating system and is used to isolate the applica-
tions programmer from the underlying redundancy and distributed processing mapping.
System initialization uses the above mapping to test the hardware components of the system
and evaluate whether there are sufficient resources to perform the mission.

AFTA is perhaps best viewed as a layered system. The top layer consists of the applica-
tions programs themselves. In an ideal world, these are constructed by the systems engi-
neers without regard for the parallel and redundant nature of AFTA. In reality, the systems
engineers must, to some extent, assist in the selection of appropriate task-to-VG mappings,
processing site redundancy levels, fault recovery strategies, and other parameters from
among those made available by the AFTA architecture.

The next lower layer consists of the AFTA System Services. Several services may be in-
voked by the applications programmer; these include task scheduling, intertask communi-
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cation, and input/output. This layer is intended to mask the complexity of AFTA’s lower
layers from the programmer.

The AFTA Ada RTS supports two different styles of scheduling. The first, known as rate
group scheduling, is suitable for task suites in which each task has a well-defined iteration
rate and can be validated to have an execution time which is guaranteed to not exceed its it-
eration frame (the inverse of its iteration rate). Flight control is an example of such a task.
The baseline AFTA rate group frames run at 100, 50, 25, and 12.5 Hz; the number and
frequencies of frames are easily changed. The second style of scheduling, herein known as
“non-rate group scheduling,” is used when the iteration rate of a particular task is unknown
or undefined. A mission planning algorithm is an example of such a task. Validation of the
temporal behavior of such tasks may be difficult. Non-rate group tasks are not allowed to
perturb the critical timing behavior of rate-group tasks. This is achieved by scheduling them
with a lower priority than rate-group tasks.

The AFTA communication services support intertask communication in the form of asyn-
chronous message passing. A sending task is not required to be cognizant of the VG host-
ing the destination task-it identifies the destination task via a logical task identifier.
Message delivery, correctness, and ordering are guaranteed in the presence of Byzantine
faults according to the Byzantine Resilient Virtual Circuit Abstraction [Har87].

The I/O services provide communications between the application program and external de-
vices (sensors and actuators). They execute on any VG which is responsible for 1/0 and
provide source congruency on all input data and voting of all output data. The I/O services
provide the user with the ability to group I/O transactions into chains and 1/O requests. It
also allows the user to schedule both preemptive and non-preemptive I/O. I/O activity is
slaved to timer-based interrupts on the VG to reduce jitter. It is expected that many VGs
will be accessing I/O devices concurrently to maximize the system’s overall I/O bandwidth.

Other important functions of the AFTA System Services are not directly accessible by the
applications programmer and are performed in a manner which is largely transparent. These
include the traditional functions of preemption of lower priority tasks by higher priority
ones, routing intertask messages to remote VGs, disassembling and reassembling long
messages, Built-In Testing and fault logging, and fielding software exceptions. Other less
traditional functions are Fault Detection, Identification, and Recovery (FDIR), reconfigura-
tion of the parallel resources into redundant computing sites, and interfacing to the NE.

FDIR is composed of local FDIR which executes on each VG and system FDIR which ex-
ecutes on a specially designated VG. Local FDIR has the responsibility for detecting and
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identifying hardware faults in the PEs of its VG and disabling their outputs using the inter-
lock hardware. In addition, local FDIR reports all link and NE faults to system FDIR and
responds to its reconfiguration commands. It is also responsible for transient fault discrim-
ination and for running self tests to detect latent faults. The system FDIR is responsible for
the collection of status from the local FDIR and detection, identification and masking of NE
faults, and link faults. It resolves conflicting local fault identification decisions, disam-
biguates unresolved faults, correlates transient faults, and handles VG failures.

When a faulty component has been identified, FDIR initiates an appropriate recovery strat-
egy which attempts to compensate for the loss of a component. The variety of recovery
strategies is vast, not only because the policy must be commensurate with the type of com-
ponent failed but also because of the system requirements and the mission phase. The array
of recovery policies includes a strategy to replace a faulty processor with a spare processor,
an option to migrate a task when its processor fails, and a policy to quickly mask the incor-
rect behavior of a failed component.

The next lower layer of AFTA consists of the interprocessor communication network
hardware, i.e., the NEs. This hardware implements the interprocessor message passing
functions of AFTA. In addition, it implements throughput-critical fault tolerance-specific
functions such as voting of messages emanating from redundant processing sites, provid-
ing error indications, assisting in synchronizing redundant processing sites, and assisting
in arranging the non-redundant parallel processing resources of AFTA into redundant pro-
cessing sites based on the needs of the application, mission mode, and the fault state of
AFTA.

At the lowest layer of interest reside the inter-NE communication links, which provide
high-bandwidth, dielectrically isolating, optical communication paths between the AFTA
FCRs. The data transmissions over the links also keep the NEs synchronized to within
180ns using digital phase-locked loop techniques.

2.2. Long-Term AFTA Development Plan

To achieve the AFTA program’s long-term objective requires a multi-phased product de-
velopment, production, and support cycle. A useful model for AFTA’s development and
deployment cycle is based on that found in MIL-STD-785B, “Reliability Program for Sys-
tems and Equipment Development and Production” [MIL-STD-785B].

First, a Conceptual Study phase is performed to ascertain the requirements of anticipated
applications and develop concepts suitable for those applications. Quantitative formulations
are developed for critical parameters such as performance, reliability, etc., appropriate to
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the level of detail available from the requirements and the proposed architectural concepts.
Deliverables of this phase include a document describing the application requirements, the
structure and operational theory of the proposed conceptual solution, analytical models and
results used in evaluating the architecture, plans for evaluating and verifying the analytical
predictions, and plans for further development phases. This documentation is provided
both in hardcopy and digital format.

Next, a Demonstration and Validation (Dem/Val) phase is executed, in which the candidate
solution is refined through extensive study and analysis, hardware development, test, and
evaluation. In the AFTA program, a prototype of the architecture is designed and con-
structed from commercially available hardware, and is denoted the AFTA Brassboard. This
prototype serves as a testbed for evaluation and improvement of the architectural concept,
increases confidence in the viability of the architecture, provides information regarding the
interaction of system components, and corroborates preliminary analytical and functional
models. In the Dem/Val phase, the verifiable attributes of the Brassboard are investigated
according to the verification plan described in Section 11 of the Conceptual Study report,
and a preliminary Failure Modes and Effects and Criticality Analysis (FMECA) is per-
formed to identify reliability bottlenecks needing attention. The analyses produced under
the Conceptual Study phase are refined based on detailed design and empirical data ob-
tained from the Dem/Val phase, and a Full Scale Development plan is constructed. If de-
ployable Non Developmental Items are available for use in the Brassboard, Reliability
Development/Growth Testing for these items may be initiated. Deliverables of this phase
include one or more copies of the Brassboard, detailed design information such as mechan-
ical drawings, parts lists, schematics, timing analyses, data and control flow diagrams,
Interface Control Documents, VHDL, ADA, and Assembler source code, hardware and
software documentation, test and evaluation results, refined analytical models, the
FMECA, and user/programmer guides. The documentation is provided both in hardcopy
and digital format.

Upon satisfactory demonstration, validation, and refinement of the architectural concept,
the Full Scale Development phase (FSD) is entered, during which the system and the prin-
cipal items necessary for its support are designed, fabricated, tested, and evaluated.

The FSD phase begins with the construction of numerous plans. These include Engineering
Development Model (EDM) fabrication, incoming/outgoing Quality Assurance, Envi-
ronmental Stress Screening (ESS), Reliability Development/Growth Testing (RDGT),
Failure Reporting And Corrective Action, Validation and Verification, Full-Scale Produc-
tion (FSP), logistics, Pre-Planned Product Improvement (P3I), and maintenance plans. A
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detailed Failure Modes and Effects and Criticality Analysis (FMECA) is performed to iden-
tify AFTA reliability bottlenecks. Production acceptance tests such as the Production Reli-
ability Acceptance Test are defined. The Preliminary Design Review, Critical Design Re-
view, and Production Readiness Review are scheduled. Deliverables from the FSD plan-
ning phase include the plans and schedule outlined above in hardcopy and digital format.
Upon satisfactory completion of the FSD plans, fabrication of the EDM begins. The EDM
is as far as possible identical to systems planned for Full Scale Production (FSP); for
AFTA, itis constructed of military-qualified components in packages and form factors suit-
able for installation in the vehicles of interest. The EDM is used to verify the producibility
of AFTA, undergo ESS and RDGT, and refine quantitative predictive models of AFTA at-
tributes. Deliverables from the EDM phase include one or more EDM copies, detailed EDM
engineering documentation, the FMECA, results from the ESS and RDGT, and Validation
and Verification results.

After EDM testing and acquisition of detailed application requirements, the architecture is
ready for Full Scale Production (FSP), in which units intended for use in one or more de-
ployments are produced in quantity. While in use in the field, all systems (even AFTA) suf-
fer faults and require continual maintenance, spares, and associated logistics support.
During production and deployment a Failure Reporting And Corrective Action plan is ex-
ercised to identify failure modes, trace them back to weak components, and, if possible,
modify the design, parts, and/or fabrication process to eliminate them. Over the AFTA’s
fielded life, Pre-Planned Product Improvements (P3I) may be implemented to increase
system capabilities, increase reliability/availability, and reduce support costs. It is generally
expected that the field support costs will far exceed all other development and procurement
costs. Finally, all systems (even AFTA) become obsolete with time, enter old age and are
replaced with newer technology.

The Conceptual Study and Dem/Val phases will now be discussed in chronological order.

2.3. Conceptual Study

The near-term objective of the AFTA program is to demonstrate and evaluate the Army
Fault Tolerant Architecture (AFTA) Brassboard within the context of the Computer-Aided
Low Altitude Helicopter Flight Program and the Armored Systems Modernization (ASM)
Program. The subject program consists of the first two phases in the product development
cycle discussed above, namely the Conceptual Study and the Brassboard Demonstra-
tion/Validation phases. These two phases are further partitioned into three separate sub-
tasks:
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1. Conceptual Study
2. Detailed Design
3. AFTA Brassboard Fabrication and Evaluation

Due to funding limitations the AFTA program Detailed Design was stretched over two
years (GFY92 and GFY93), while the Brassboard Fabrication was completed on schedule

under separate funding.

The approximate schedule for these phases is given in Figure 3:
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The Conceptual Study comprised the Requirements Definition, Requirements Acquisition,
Engineering Description, Analytical Modeling, Verification Plan, Architecture Configura-
tion, the C2 Loaner, and the Fault Tolerant Data Bus subtasks.

In the Requirements Definition phase, we defined a format for requirements that the appli-
cation designer may place upon the computational system. Relevant requirements data in-
clude reliability, maintainability, availability, testability (RMAT), performance require-
ments, operational environment, mission scenario, and maintenance strategy.

In the Requirements Acquisition phase, available data were obtained for the Army missions
of interest from C2SID, CECOM-C3, and RAMECES. These requirements were deter-
mined by the Computer-Aided Low Altitude Helicopter Flight and the Ground Maneuver
Systems Fault Tolerant Navigation Processor programs. For brevity these applications are
henceforth referred to as the “TF/TA/NOE” (for Terrain-Following/Terrain-
Avoidance/Nap-of-the-Earth) and the “Ground Vehicle” applications, respectively. The re-
quirements were transformed where possible into the format defined in the Requirements
Definition phase.

In the Engineering Description phase, a detailed description was generated of the compo-
nents of AFTA and how they are assembled and operated. The engineering description is
sufficiently detailed to provide the analytical models with parameters such as throughput,
memory, intertask communication bandwidth and latency, input/output bandwidth and la-
tency, weight, power, size, volume, and component failure rate as a function of the archi-
tecture configuration chosen for a given Army application. In addition, the engineering de-
scription provides details on how to develop software for AFTA and operational details on
fault tolerance and recovery schemes.

In the Analytical Modeling phase, analytical models were constructed to predict whether a
given AFTA configuration will meet the requirements as specified in the Requirements Ac-
quisition phase. These models are parameterized so as to be useful in estimating the charac-
teristics of the Brassboard as well as multiple deployable AFTA configurations.

The Verification Plan phase comprises the construction of a plan for demonstrating that the
analytical models predict system characteristics with reasonable accuracy. This plan is exe-
cuted in the Dem/Val phase.

In the Architecture Configuration phase, the AFTA architectural parameters were adjusted
to realize conceptual architectures for the two Army missions: the helicopter TF/TA/NOE
mission and the Ground Vehicle mission. The analytical models developed in the Analytical
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Modeling phase are used to predict AFTA reliability, availability, weight, power, volume,
and Life Cycle Costs for these missions.

In the C2 loaner subtask, the AFTA Cluster 2 (C2) was delivered to C2SID for evaluation
and familiarization with AFTA technology. The C2 is a quadruply redundant uniprocessor
version of the AFTA and hosts the same basic Ada Run Time System and software devel-
opment environment as AFTA. The AFTA software development environment was pur-
chased and delivered to C2SID in the Conceptual Study phase to jump start the AFTA ap-
plication software development process. In a related effort, the testability of the C2
Network Element (NE) was evaluated by writing and demonstrating self-test software; the
lessons learned from this exercise will be used to improve the testability of the AFTA
Network Element.

Common-mode faults are those which occur in more than one copy of a redundant compu-
tation due to a common source. Thus, they can defeat redundancy-based fault tolerance
techniques such as those used in AFTA. A methodology for detecting and recovering from
common-mode faults in AFTA was developed. In addition, a plan for verifying the effec-
tiveness of the common-mode fault tolerance techniques comprising the methodology was
formulated.

As a separate but related effort, an FTDB was developed to provide a fault tolerant net-
working system for AFTA and other digital systems, including the Silicon Graphics dis-
play processor, the Merit Technologies MT-1 VME system, the US Air Force Real-Time
Al System (RTAIS), sensor and image processors, and flight and engine controls. The
objective of the fault-tolerant data bus effort is to provide highly reliable end-to-end com-
munications between the above systems. The conceptual design of the FTDB covered many
aspects of network design, including media technology, media access control, topology,
routing, OSI protocol stacks, and fault detection and recovery. In addition to these tradi-
tional network topics, the FTDB also encompasses techniques from the area of fault-toler-
ance, including Byzantine resilience and authentication protocols.

2.4. AFTA Brassboard Demonstration and Validation

Following the completion and evaluation of the Conceptual Study phase the Brassboard
Dem/Val phase begins. The first year of Dem/Val comprises the Detailed Design phase,
while the second year comprises the Fabrication, Integration, and Validation phase. The
program is currently at the completion of the Detailed Design phase. An AFTA has been
constructed and demonstrated on two applications, partially under separate funding.
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2.4.1. Detailed Design

The intent of the detailed design phase is to design the hardware and software architectures
recommended from the Conceptual Study phase, in preparation for Brassboard fabrication
in the Fabrication, Integration, and Validation phase. It comprises work in the following

areas.

The design of the Brassboard AFTA Network Element is completed. The design of the
backplane-independent components of the NE is described in VHDL at the behavioral level.
A comprehensive set of NE self-tests is designed, and a software simulation of the NE is
constructed for use in Operating System and other AFTA software development efforts.

The basic AFTA Ada run time system (Ada RTS) is designed, documented, and key sys-
tem functions are prototyped. The Ada RTS includes task scheduling, intertask communi-
cation, input/output services, and Fault Detection, Identification, and Recovery functions.

The quantitative models of AFTA’s reliability, availability, weight, power, volume, failure
rate, life-cycle cost, and other parameters are refined as design and application mission de-

tails become available.

The schedulable milestones for the Detailed Design phase are listed below. All of this work
has been completed as of the end of the Detailed Design phase.

Hardware:

1. Complete the detailed design of the AFTA Brassboard Network Element.
This includes schematics, netlists, PAL equations, microcode, timing dia-

grams, parts lists, and board layouts.

2. Complete the Network Element Simulator.
3. Complete the fabrication and testing of a single AFTA Brassboard Network
Element.

4. Complete the VHDL behavioral model of the Network Element Scoreboard
and Data Path Board.

Basic Ada Run Time Systemn:

1. Complete the Software Development Plan.

2 Complete the Ada RTS Software Requirements Specification.
3. Develop a debugging/development support environment.

4 Perform the Detailed Design of the Ada run time system.
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5. Code and test a key subset of Ada run time system functions with the
Network Element Simulator.

6. Test a key subset of Ada run time system functions with the existing AFTA
Brassboard Network Element.

Quantitative Models:

1. Update the quantitative models of AFTA based on evolving engineering data
and mission details.

2.4.2. Fabrication, Integration. Validation

In the Fabrication, Integration, Validation Phase one or more Brassboard AFTAs are as-
sembled. The AFTA’s Network Elements (NEs) are fabricated and tested, the Processing
Elements (PEs), Input/Output Controllers (I0Cs), backplanes, and Power Conditioners
(PCs) are purchased, and the Operating System (OS) software is completed.

After fabrication and integration of the components the Brassboard is delivered to the Army
for demonstration and validation. For the demonstration, a representative application is
ported to AFTA. Subsequently, the critical parameters of AFTA are evaluated according to
the verification plan described in Section 11 of the Conceptual Study.

The following parameters are measured, both with and without injected faults in relation to
the TF/TA NOE application:

1. Delivered throughput per processing site

2. Available memory per processing site

3. Effective intertask communication bandwidth
4. Effective 1/O bandwidth

5. Iteration rate of a task

6. Reliability

7. Availability

8. Testability

9. Cost per unit of service

10.  Weight, power, and volume

The fault recovery and common mode fault tolerance capabilities specified by C2SID will
also be demonstrated.
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Deliverables of this phase include one or more copies of the Brassboard, detailed test and
evaluation results, and refined analytical models. The documentation is provided both in
hardcopy and digital format.

2.5. Documents Used and Generated Under This Contract

The documents used under the AFTA Detailed Design phase are listed in Section 6,
“References.” The documents generated under this contract are listed below.

1. NASA Contractor Report 189632, Volumes I and II, “Advanced
Information Processing System: The Army Fault Tolerant Architecture
Conceptual Study,” July 1992.

2. AFTA Detailed Design Phase Documentation, Volumes I (NASA Contractor
Report 194924, “Advanced Information Processing System: The Army
Fault Tolerant Architecture Detailed Design Overview”), II, and III, June
1994,

3. “Systern Performance Modeling and Analysis of a Fault-Tolerant Real-Time
Parallel Processor,” R. J. Clasen, Master of Science Thesis, Northeastern
University, May 1993.

2.6. Overview of Detailed Design Phase Deliverables

The primary deliverables of the AFTA Detailed Design phase is a set of engineering docu-
ments which are adequate to facilitate the construction of the AFTA Brassboard. The doc-
uments represent the state of the design prior to Brassboard fabrication and, by necessity,
do not reflect design updates resulting from the Brassboard fabrication, validation, and
verification. The documentation consists of three volumes.

Volume I, “Overview Volume,” contains the program overview and status, updated per-
formance and reliability models, and an description of the deliverables of this phase of the
AFTA development.

Volume I, “AFTA Software Documentation,” contains the AFTA Software documenta-
tion, including the Software Development Plan (SDP), the Software Requirements Specifi-
cation (SRS), and a directory of the files delivered on digitally readable media. Source code
listings are provided for the AFTA Ada Run Time System, the Network Element
Simulator, the Performance Measurement and Data Processing software, the Static Code
Execution Time Analysis software, and the Network Element Self Test software.
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Volume III, “AFTA Network Element hardware Documentation,” contains an updated ver-
sion of Section 4 of the Conceptual Study describing the operational overview of the Net-
work Element and a directory of all files delivered on digitally readable media. Board lay-
outs, schematics, Programmable Array Logic (PAL) equations, VHDL source and test-
bench code, VHDL testbench inputs and outputs, timing diagrams, microcode, and Field
Programmable Gate Array (FPGA) designs are provided for the Network Element.
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3. Updated Reliability Model

The AFTA reliability and availability are strong functions of the policies which are used to
manage the redundant AFTA resources. A design change in the FDIR software arising out
of the Detailed Design phase may have an impact on the reliability obtained using one of
these options. Before describing the design change and its quantitative impact on AFTA re-
liability, the two redundancy management options selected for analysis under the AFTA
program will be reviewed.

3.1. Review of Two AFTA Redundancy Management Options

The reliability and availability of an AFTA implementation is a function of the number of
FCRs and PEs, the VG redundancy levels, the mission environment, the operational and
maintenance scenario, and fault recovery procedures. Two classes of AFTA fault recovery
options were analyzed in the AFTA Conceptual Study, and each one has a different impact
on the overall AFTA reliability and availability.

The first class of options, of which the graceful degradation and Network Element masking
in Section 5.6.6 of the Conceptual Study Final Report are examples, are appropriate for an
operational mode in which little if any time is available for fault recovery. In this case, a
faulty component in a redundant VG or an NE is immediately disabled upon detection, with
no lengthy fault recovery attempted. No effort is made to discriminate between transient
and permanent faults for the purpose of performing on-line recovery, in effect treating all
faults as permanent until a more relaxed operational regime is entered. This option has the
advantage of incurring no dropout of functionality, but has the disadvantage of irreversibly
reducing the redundancy level of the faulted VG and hastening its demise due to redun-
dancy exhaustion. Therefore it may be viewed as being best suited for short missions hav-
ing fast real-time constraints, such as real-time control of mission-critical helicopter func-
tions.

Page 19



VG 1
(degraded
triplex)

Figure 4. Graceful Degradation of Quadruplex VG,

Figure 4 llustrates this fault recovery option: after the first failure of member A of quadru-
ply-redundant VGj, the faulted member is disabled, reducing VG;’s redundancy level to
triplex. A second failure of one of VG;’s members, say B, reduces its redundancy level to
“degraded triplex.” For a degraded VG, the Network Element’s main data path packet voter
masks the input from the faulted member and does not include it in the vote. The
Scoreboard, however, continues to consider a degraded VG’s faulted channel when calcu-
lating the VG’s voted Output Buffer Not Empty (known as OBNE, an indication that the
VG has a packet to be transmitted from its Qutput Buffer) and voted Input Buffer Not Full
(IBNF, an indication that the VG is capable of receiving at least one packet in its Input
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Buffer)t. This is to allow a faulted member of a degraded VG to remain in synchronization
with its parent VG to facilitate recovery operations. This capability is more robust and use-
ful for degraded quadruplex VGs than for degraded triplex VGs.

& ? VG 1 (quad)

4
s
395

i

Ho

Figure 5. Processor Replacement Redundancy Management for Quadruplex VG

>

A third failure in VGy, say of member C, reduces its redundancy level to simplex, and a
fourth failure results in the loss of the functionality supported by VG). The probability of
successfully transitioning from a faulted degraded triplex VG to a nonfaulty simplex is
significantly less than unity, and is represented by the “duplex coverage,” cp.

T See Section 4 of the Conceptual Study Final Report for a discussion of this terminology.
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When a fault recovery time on the order of a second of two is permissible, a wider range of
fault recovery options are available. Representatives of this class of options are listed in
Section 5.6.6 of the Conceptual Study Final Report as processor resynchronization, pro-
cessor reintegration, processor replacement, processor replacement with initialization, task
migration, and Network Element resynchronization. All of these recovery options are char-
acterized by their capability to seek and find components sufficient to maximize the likeli-
hood of forming a desired configuration of redundant VGs, followed by either initializing
or copying the state of the newly reintegrated component into agreement with the surviving
members of the faulted VG. As is mentioned earlier, this process, while maximizing the ef-
fective use of the reconfigurable AFTA components, consumes one to two seconds to per-
form. As an example of such a strategy in the context of the previous example, we recon-
sider the case of a processor replacement fault recovery option applied to VG1T. After a
failure of member A of VG, VG1’s redundancy level can be restored by switching in (say)
the PE adjacent to member A. After the second failure of member B, a spare processor may
be reintegrated, again restoring VG1’s quadruplex redundancy level, and so on and so forth
(Figure 5). This can continue until all the spares allocated to repairing VG are exhausted,
at which point the VG fault recovery policy may revert to the graceful degradation policy
described above, or another policy may go into effect.

The more leisurely fault recovery options in this class are more suited to less stressful real-
time operational regimes and missions, such as during the hiatus phase of the flight mission
where availability is to be maximized, or during a long ground mission where one or two
second dropouts are a reasonable tradeoff for significant mission longevity enhancement.

3.2. Modifications Arising from Detailed Design Phase One

Section 9 of the Conceptual Study presented formulations of the probability that AFTA can
perform its intended functions, i.e., form the requisite number of functioning VGs, when
managed according to the two fault recovery policies outlined above. These formulations
remain unchanged as a result of the evolution of the detailed design.

Mission times, environments, and failure rates were also presented in the Conceptual
Study. These also remain unchanged. In the Conceptual Study, the AFTA component fail-
ure rates were calculated assuming that the hiatus environment corresponds to the Ground,
Fixed (GF) environment, and the mission environment corresponds to the Rotary Wing
Aircraft (AR) environment, both described in MIL-HDBK-217E. These values are un-

T Different VGs may have different fault recovery options, and the same VG’s fault
recovery option can vary over the course of a mission.
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changed and are repeated below for convenience. Mission times for the helicopter mission
ranged from 1 to 8 hours, a Minimum Dispatch Complement of 6 VGs was assumed, and a
duplex coverage of 0.50 is used.

Component | GF failure AR failure
rate, per hour | rate, per hour
PE 1.92E-5 6.58E-5
NE 4.08E-5 1.85E-4
PC 1.59E-5 5.40E-5
FCR Back- 1.92E-6 6.58E-6
plane Bus

Table 1. AFTA Component Failure Rates for Helicopter Mission Scenario

Volume I of the Detailed Design Phase One Documentation describes how the Fault De-
tection, Identification, and Recovery (FDIR) design has been changed to facilitate imple-
mentation, testing, validation, and temporal determinism. In the new design, all fault diag-
noses and recovery acts are executed or controlled by a single System Virtual Group, as
opposed to the Conceptual Study design in which each VG was responsible for its own di-
agnosis and, in most cases, recovery. The net result of this FDIR design modification is
that the mean time between error manifestation and recovery is increased from a value of 10
milliseconds to a larger, currently undetermined, value. It is expected that this value will be
less than one second. The analytical parameter which represents the inverse of the recovery
time is called the recovery rate and denoted [ in the AFTA dependability models. The fol-
lowing sections analyze the effect of varying this parameter on overall AFTA mission reli-
ability and availability. The variation will be performed over a wide enough range to ensure
that the final AFTA recovery rate is covered by the analysis.

3.3. Effect of Recovery Rate on AFTA Mission Reliability

During a mission having fast hard real-time constraints, the AFTA VGs are managed under
a “graceful degradation” redundancy management policy. Under this policy, system fail-
ures may occur as a result of the arrival of a second fault while AFTA is in the process or
recovering from a preceding fault. The probability of this occurrence is proportional to the
mean time required for recovery, or, equivalently, inversely proportional to the recovery
rate p.
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To illustrate the effect of an the recovery rate on AFTA mission reliability, the formulation
for the reliability of the AFTA under this policy is repeated below from the Conceptual
Study.

Let Z(A, W, t, r) represent the reliability at mission time t of a VG having processor failure
rate A, fault recovery rate |, and redundancy level r, assuming PE faults only. This is the

probability of occurrence of all operational states (redundancy levels of 1, 2, 3, or 4) of the
VG minus the probability that the VG fails due to near-coincident PE faults.

i I-i 2
Zlcir)(e'h) (l-e'h) :I______r(r-l)l t ,1>0
v B M

E\ L, t0)=

where c; is the probability that a VG of redundancy level i+1 can successfully degrade to a
VG of redundancy level i. The second term in the above equation is the approximate prob-
ability that the VG suffers catastrophic failure due to near-coincident PE faults.

If r>1, then
CD l=1
o= 1.0,1i=2
1™ 1.0,i=3
1.0,i=4
If r=1, then
cp=1.0

The parameter cp ranges from 0.5 to 0.90, depending upon the level of effort put into tol-
erating faults in duplex VGs. A safe assumption is usually cp = 0.50, since at worst the re-
dundancy management function can, upon detecting a fault in a duplex VG, randomly
guess which one is faulty and mask it out.

Let nelist(VGj) represent the set of FCRs which contain at most one channel of VG;. For
example, if quadruply redundant VG; has members in FCRs 0, 1, 3, and 4, then
nelist(VGy) = {0, 1, 3, 4}.
The conditional VG reliability becomes

R(VG; Ino FCR faults) = E(App, Kpp t, redlev)
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=Z(A t, redlev.), je nelist(VG,
R(VG; | FCR; faulty) = Pre Hee ] (VG
E(App Hpp t, redlev;-1), jenelist(VG))

and

(E(A.PB Kpp t, Tedlevy), j& netlist(VG; and ke nelist(VG)),

EApp, Hpp t, redlev;-1), je netlist(VG; and ke nelist(VG)),
E(App Kpp t, redlevi-1), je netlist(VG; and ke nelist(VG)),
kE(XPE, Hpp t, redlevi-2), je netlist(VG; and ke nelist(VG;)

R(VG, | FCRs j, k faulty ) = <

This formulation for the conditional VG reliability is used to compute pGp:

Pop= I1 R(VG,Ino FCR faults) | Pr(no FCR faults)
VG, eF, F,e$

:
+31 TI R(VG;IFCR n faulty) | Pr(FCR n faulty)
n=1 VG,€F, F;eS

NNEs NNEs
KDY > [1 R(VG,IFCRs n and m faulty) | Pr(FCR n faulty) Pr(FCR m faulty)
n=1 m=1. men] VG, eF, F,eS

Lengthy fault reconfiguration times can result in a significant probability of AFTA failure
due to a second fault occurring while AFTA is recovering from a prior fault. The AFTA re-
liability and availability models compute the probability of failure due to near-coincident
faults and attrition to allow estimation of their relative importance and the consequent need
for intensive verification of reconfiguration time. Table 2 illustrates the probabilities that a
single VG suffers failure due to attrition and near-coincident faults for the helicopter mis-
sion described in the Conceptual Study. A 100Hz recovery rate was used in this calcula-
tion, and the Minimum Dispatch Complement was assumed to be 6 VGs. Note that the two
contributors to VG failure are of commensurate magnitude when quadruplex VGs are used
for short mission times, and therefore statistically significant verification of reconfiguration
time becomes an issue in this case. In general, large variations in the AFTA mission dura-
tion or reconfiguration time may force this quantity into prominence.
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VG Redundancy Level

Probability of VG Fail-
ure due to Attrition

Probability of VG Fail-
ure due to Near-Coin-
cident Faults

1 Hour Helicopter

Mission
Triplex 6.49E-09 7.21E-14
Quadruplex 7.14E-13 1.44E-13
2 Hour Helicopter
Mission
Triplex 2.59E-08 1.44E-13
Quadruplex 4.84E-12 2.88E-13

Table 2. VG Failure Probability Due to Attrition and Near-Coincident Faults - 100Hz
Recovery Rate as Assumed in Conceptual Study

The following table shows the sensitivity of VG failure probability to varying recovery rate
over two orders of magnitude. The 100Hz column repeated from the Conceptual Study to

allow comparison with this design baseline.

Recovery 100 Hz 10 Hz 1 Hz
Rate = :
vG Attrition | Near-Co- | Attrition | Near-Co- | Attrition | Near-Co-
Redundancy incident incident incident
Level { Faults Faults Faults
1 Hour
Helicopter
Mission
Triplex 6.49E-09 7.21E-14 6.49E-09 7.21E-13 6.49E-09 7.21E-12
Quadruplex 7.14E-13 1.44E-13 7.14E-13 1.44E-12 7.14E-13 1.44E-11
2 Hour
Helicopter
Mission
Triplex 2.59E-08 1.44E-13 2.59E-08 1.44E-12 2.59E-08 1.44E-11
Quadruplex 4.84E-12 2.88E-13 4.84E-12 2.88E-12 4.84E-12 2.88E-11

Table 3. VG Failure Probability Due to Attrition and Near-Coincident Faults - 100Hz,
10Hz, and 1Hz Recovery Rate

3.4. Effect of Recovery Rate on AFTA Mission Availability

Variations in the fault recovery rate has no effect on AFTA Mission Availability.
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4. Updated Performance Model

The Detailed Design phase resulted in the implementation of a hard real-time Ada run time
system which includes a multitasking rate group dispatcher, interprocess message passing
functions, FDIR, and Input/Output Services. In order to construct a plausible performance
model it is necessary to empirically measure the execution time of these functions. When
their execution times vary, it is necessary to determine the parameters which affect this
variance and determine the sensitivity of execution time to such parameters.

This section includes preliminary performance measurements of the rate group dispatcher,
context switch times, message queuing and retrieving (with and without FDIR), and FDIR
functions. All measurements were taken on an AFTA RTS which was interfaced to the
Network Element Simulator (as opposed to hardware-implemented Network Elements).
Before the detailed performance measurements are presented, an review of the basic AFTA

run time system functions is provided.

4.1. Overview of AFTA Ada RTS Scheduling

The AFTA is designed for hard real-time applications. A rate group scheduler has been se-
lected as the primary scheduling paradigm for the Ada RTS. This section discusses the ra-
tionale for the selection of this paradigm and illustrates its use to achieve hard real-time re-
sponse for periodic and aperiodic hard real-time tasks.

Hard real-time schedulers must ensure that task executions, inter-task interactions, and in-
teractions between the tasks and the outside world are predictable and deterministic, with
guaranteeable worst-case response time. The means for validating this guaranteed response
time must be an integral part of the scheduling paradigm. The scheduling paradigm should
exhibit formal tractability to facilitate its formal specification and verification to reduce the
occurrence of scheduler design and implementation errors. The scheduler should enforce
the notion of “separation of concerns” to permit the combinatorially explosive validation of
a complex application to be accomplished via the more tractable option of validating its
constituent parts and their interactions. Guaranteeing these properties is often in direct
conflict with programming and maintenance ease. An engineering tradeoff must be per-
formed keeping in mind the disastrous ramifications of failure to meet a hard real-time
deadline and the high life-cycle cost of software maintenance.

Relevant developments influencing the design rationale of the AFTA scheduler include Rate
Monotonic Scheduling [Liu73], the MARS (MAintainable Real-time System) [Kop89], the
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Reliable Computing Platform (RCP) [DiV90], and the NASA Space Transportation System
General Purpose Computer (GPC) ([Car84], [Han89]).

411. T chi i n a Single Vi T

The AFTA supports two different paradigms for scheduling tasks on a single Virtual
Group. The first, known as rate group scheduling, is suitable for task suites in which each
task has a well-defined iteration rate and can be validated to have an execution time which is
guaranteed to not exceed its iteration frame (the inverse of its iteration rate). A modification
of rate group scheduling discussed below also allows aperiodic hard real-time events to be
processed. The second style of scheduling, known as aperiodic non-real-time scheduling,
is available when the iteration rate of a particular non-real-time task is unknown or unde-
fined. Validation of the temporal behavior of such tasks may be difficult. In AFTA, non-
real-time aperiodic tasks are not allowed to perturb the critical timing behavior of hard real-
time tasks.

In a rate group paradigm tasks executing on each VG in the AFTA are characterized by an
iteration rate. In the AFTA, these rates are nominally 100, 50, 25, and 12.5 Hz, corre-
sponding to rate group identifiers R4, R3, R2, and R1, respectively. A rate group frame
duration is the inverse of the rate group iteration rate; thus the R4, R3, R2, and R1 frames
are 10, 20, 40, and 80 ms in duration, respectively. All frame boundaries are determined
by crystal oscillator-controlled interrupts. The frequencies and number of rate group frames
are readily changed as the application dictates. Frames executing on different VGs in the
AFTA need have no particular phase relationship with each other, although a desired phase
relationship among certain frames may be enforced in some applications using a multi-VG
rate group phasing method described below.

Within a particular rate group frame, tasks are scheduled using a nonpreemptive static
schedule. When scheduled, a task executes to self-suspension. The exact time of execution
of a particular task in the rate group frame will be in general unknown to the application
programmer, and interactions between RG tasks and other entities occur only at RG
boundaries, similar to the MARS temporal encapsulation concept. Instead, AFTA guaran-
tees that all tasks within a rate group will be executed in the order specified by the applica-
tion programmer sometime within the appropriate rate group frame. Figure 6 illustrates the
basic idea of a single rate group.
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Figure 6. Rate Group Frame - Programming Model

To achieve multi-rate group execution on a VG, lower frequency rate group tasks are inter-
rupted on a periodic basis to allow the higher-frequency rate groups to execute (Figure 7).
The interruption process is transparent to the application programmer.

minor frame index:
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N Frame \ Frame N Frame BN, Frame k Frame N Frame N Frame k Frame f
H ‘ H ‘ = H ‘ \ H
RG3 Frame § RG3 Frame \\ RG3 Frame RG3 Frame \\
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I/0, Message-Passing

Figure 7. Architecture of RG Frames on a Single VG
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Task overruns are detected by the rate group dispatcher at the end of each RG frame. Since
all tasks within a frame nominally execute to self-suspension, the rate group dispatcher can
detect a frame overrun by checking the suspension status of tasks which should have com-
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pleted an iteration in the preceding rate group frame. Note that since the task which caused
the overrun may itself have completed in the frame yet caused a subsequently-scheduled
task to overrun, this technique does not conclusively identify which task is responsible for
the overrun. Identification of the culprit task is achieved by comparison of the actual mea-
surement of each task’s execution time with its predicted execution time (note that this in-
formation is already needed for construction of the task schedule). Several overrun han-
dling options exist and must be selected on a task-specific basis. Examples include aborting
or restarting the culprit task, or resuming the preempted task from its preemption point at
the start of its next RG frame.

Rate group scheduling may be viewed as a compromise between dynamic preemptive and
static non-preemptive scheduling. Within a rate group, a static nonpreemptive schedule is
followed. Higher frequency rate groups preempt lower frequency rate groups in a variant
of rate monotonic scheduling [Liu73] modified for task suites having harmonic iteration
frequencies. Because they interact only on frame boundaries, the set of rate groups may be
viewed as a temporally encapsulated set of nonpreemptive tasks which may be formally
treated independently.

4.1.2. Intertask Communication

All communication to tasks within a rate group is delivered and made available to the rate
group tasks at the beginning of their rate group frame. All communication emanating from
tasks within a rate group is queued within the rate group frame and transmitted at the end of
that rate group frame. All messages not read by a RG task by the end of its frame can either
be retained or deleted, with appropriate notification given to the recipient task. All commu-
nication emanating from a non-rate-group task is queued and transmitted on the frame
boundary immediately after the one in which either (1) all copies of the task have requested
transmission of the message, or (2) a majority of the copies of the task have requested
transmission of the message and a user-defined timeout has expired.

4.1.3. Overview of Minor Frame

A simplified description of the sequence of events occurring within a minor frame of a sin-
gle VG is depicted in Figure 8. The frame begins with a Frame Timer interrupt which is
generated by a crystal oscillator resident on each member of the VG. Immediately after the
Frame Timer interrupt, the VG synchronizes its members using a synchronizing act as de-
scribed in the AFTA Conceptual Study Final Report, and sets up the Frame Timer interrupt
for the next minor frame. This reduces the skew with which the members of the VG receive
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the next Frame Timer interrupt to the Network Element’s post-synchronization skew plus
the crystal oscillators’ drift over the frame.

(not to scale)
Frame Timer I/0 Completion

s Frame Timer
Rupt, Timer Rupt,

) Rupt,
VG Sync VG Sync VG Ssync
I/0
Transactions .
¢¢‘¢¢¢ # ‘ ask Dispatcher
‘ N
1/0 10S8C \
Dispatcher & Application Tasks
RM _ e

RG1. .4 Queued Message Passing
(R4 tasks may perform message
passing at any time)

Figure 8. Overview of Minor Frame

After the synchronizing act, the I/O dispatcher performs all I/O activity as close as possible
to the synchronizing act in order to minimize I/O jitter. For I/O performance reasons, it is
possible for each member of a VG to perform different I/O transactions and thus not to be
in synchrony after performing such operations. Therefore an I/O Completion interrupt is
scheduled on all VG members at a user-definable time after the Frame Timer interrupt in
order to snap them back into synchronization. The Frame Timer - I/O Completion interrupt
interval may vary for each frame based on the I/O transactions performed in that frame, and
is determined by the most lengthy set of transactions the VG’s members must perform.
This interrupt is generated by a crystal oscillator on each VG member.

After the 1/O Completion interrupt another VG synchronization is performed by the RG
dispatcher, and messages previously queued for transmission by rate group tasks which
completed in the prior frame are transmitted to the Network Element. Messages are also
read from the NE to the VG at this time. The FDIR task is scheduled after message pass-
ing, followed by the I/O Source Congruency and Redundancy Manager and I/O Processing
tasks. The I/O tasks are responsible for transmitting single-source input data from one
member of the VG to the others, I/O Controller/Device error processing, and deriving and
formatting a known good copy of redundant input data for delivery to the destination appli-
cation task. The I/O Processing task is also responsible for transmitting predetermined in-
put data from one VG to another.
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After the J/O tasks execute, the application tasks are scheduled and execute according to the
rate group scheduling paradigm until the next Frame Timer interrupt occurs.

4.1.4. iodi l-Time T h

The AFTA scheduler supports the execution of event-triggered hard real-time aperiodic
tasks by statically assigning the processing associated with each given event with an RG.
An appropriate RG is determined a priori by the maximum allowable time between the oc-
currence of the event and the VG’s output response. Events may of course occur at any
time. The AFTA Input/Output System Service (IOSS) is scheduled at the beginning of each
frame and is responsible for reading the status of any events to be processed in subsequent
frames. Thus there is at most one minor frame’s latency between the time of an event’s oc-
currence and the time at which the IOSS processes the event for delivery to the destination
task. An event processing task may be assigned to rate groups 1 through 4, in some cases
preempting iterative tasks as outlined below. Multiple event processing tasks may be
scheduled on a VG. The following table illustrates the maximum event response time as a
function of the RG containing the event processing task.

Rate Group Maximum Event | Maximum Event
Response Response
Latency, # Minor Latency, ms
Frames (10 ms Minor
Frame)
1 16 160
2 8 80
3 4 40
4 2 20

Table 4. Maximum Event Response Latency vs. Rate Group

Figure 9 shows an event occurring in frame O of a rate group schedule. If the event pro-
cessing task is in R4, then the response from the event is delivered at the end of frame 1. If
the task is in R3, the response is delivered at the end of frame 3. If the task is in R2, the re-
sponse is delivered at the end of frame 7, and if the task is in R1, the response is delivered
at the end of frame 7 of the subsequent major frame (not shown in the figure).
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Figure 9. Scheduling of Event-Triggered Hard Real-Time Aperiodic Tasks

Hard real-time event processing tasks are assigned to rate groups and are scheduled based
on the occurrence of the events they are designed to handle. The arrival of a high-priority
event and the consequent scheduling of an event processing task may perturb the timing of
periodic tasks. Several options exist for gracefully scheduling event-triggered hard real-
time aperiodic tasks.

One may validate the task suite’s execution time upper-bound in the presence of all “valid”
event combinations. The advantage of this approach is predictability and validatability for
foreseen event suites. The programmer need not worry about frame slippage due to event-
based preemption. The disadvantages are potential poor processor utilization, undefined or
unpredictable behavior should an unforeseen event suite occur, and lengthy validation.

Alternatively, depending on the event to be processed, one can deschedule one or more se-
lected periodic tasks of equal or higher iteration rate. After event processing completion, the
descheduled iterative tasks must be rescheduled for resumption. It is critical that, regardless
of the selected option, periodic and aperiodic hard real-time task aggregate execution times
must be validated to meet all real-time constraints.
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4.1.5. Aperiodic Non-Real-Time Task Scheduling

Aperiodic tasks which do not have hard real-time constraints are executed after all rate
group tasks (including aperiodic hard real-time tasks) have been executed. There may be
several non-real-time aperiodic tasks running on a VG and they may be scheduled arbitrar-
ily (unprioritized round-robin, multi-level prioritized, etc.).

4.1.6. Execution of RGs on Multiple VGs

Due to the parallel nature of AFTA, different VGs will execute different RG task suites.
Mapping a multi-VG multi-RG task suite onto multiple VGs can be performed in a straight-
forward manner using application task-to-parallel processor mapping technology embodied
in an integrated schedule generation and analysis tool. Many such tools have been built and
are commercially available. Task suites are expected to change as a function of the mission
mode and system state. This will give rise to multiple mappings. Each such mapping must
be created using the schedule generation and analysis tool. Moreover, the valid transition
sequences from one such mapping to another must be carefully defined and implemented so
as to continuously meet real-time requirements during the transition period. We note that
most tool designs do not appear to handle the generation and evaluation of transitions from
one task mapping to another with respect to continuously meeting real-time constraints.

The rate group phasing describes the relationship between rate group frames on different
VGs in an AFTA. This phasing can be selected to minimize nondeterminism due to con-
tention for the shared Network Element communications media as described below.

Within the task configuration table, each task is assigned to execute in some rate group.
The rate group determines the frequency at which the task will be executed, and the result-
ing rate group frame boundaries delimit the execution cycle of the task in accordance with
temporal encapsulation. Tasks assigned to the same rate group will execute at the same fre-
quency regardless of their hosting VG, but there may be a time difference between the start
of their first and each subsequent rate group frame if the tasks are executing on different
VGs. This phasing could, for example, be caused by the completion of system initialization
at different times on different VGs. An example phasing of the frames for tasks in a given
rate group on multiple VGs is shown in Figure 10.
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In the example, the first rate group frame on VG1 starts at some “base time” and the first
rate group frames on the remaining VGs are delayed. The interval between the base time
and the start of its first rate group frame is a VG's phase delay. The phase delay is impor-
tant because it determines the relationship between the frame in which messages are sent by
one VG and the frame in which they are received by another. It also effects the degree and
predictability with which the different VGs contend for the Network Elements and other
physical resources. Predictability with respect to a single VG is enhanced by the message
passing restrictions in the rate group tasking paradigm. In the paradigm, a task's queued
messages are only sent and its received messages are only made available at its correspond-
ing rate group frame boundary. This is indicated in the figure by the arrows at the frame
boundaries. An example from the figure is the messages transmitted after the first frame
from VG1. They will be received at the start of the first frame on VG2 and VG4, but will
not be received until the start of the second frame on VG3. This relationship of sending
frame to receiving frame will remain constant for subsequent frames if the phasing does not
change.

The time management service (embodied in the rate group dispatcher task) has been de-
signed to achieve a fixed phase between the RGs of different VGs by locking a VG’s phase
to the system time maintained by the Network Element. There still remains inherent float
because of the variability of the interval from the start of the frame to when any given mes-
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sage will be sent or read. This float is increased when VGs which share a Network Element
have the same phase delay or their delays differ by an integer number of minor frames.
This is because the VGs are then forced to compete for access to the Network Element to
send and read their messages at their frame boundary. For this reason the simplest phasing
of a zero phase delay for all VGs is not recommended. The phase field in the VG configu-
ration table is provided to specify the desired phase delay for each VG.

4.2. Performance Models

Two aspects of AFTA system performance are of special importance. The first of these is
the operating system overhead. Due to AFTA's real-time constraints, the overhead associ-
ated with the operating system (OS) tasks needs to be accurately predicted to ensure suffi-
cient time exists for the execution of user application tasks. The second area of concern is
contention for Network Element services by the Processing Elements (PEs). Since up to
eight PEs may be served by one NE, the PEs have to contend with each other for NE ser-
vice. This contention results in decreased performance, as well as variable execution time.

Because of their importance to AFTA system performance, analytical models for both the
operating system overhead and Network Element contention are developed. This section
presents descriptions of each model.

4.2.1, eratin tem Overhead Model

This section gives a general overview of the model for the overhead associated with AFTA
operating system tasks. Figure 11 reviews the operating system tasks associated with each
minor frame.

Frame Timer O Complstion Frame Timer
Interrupt Interrupt Interrupt

110 transactions

queued message passing

Figure 11. Overview of Minor Frame
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The overhead required by system resources within each minor frame is the sum of the exe-
cution times for each of the following operating system tasks: interrupt handler (IH), rate
group dispatcher (RGD), IO dispatcher (IOD), Fault Detection Identification and Recovery
(FDIR), IO Source Congruency Manager (IOSC), and 10 Processing (IOP). This over-
head is represented by the following equation:

OH =[H; + RGD; + IOD + IH3 + RGD; + FDIR + IOSC + IOP

A description of each of these eight overheads follows.

4.2.1.1. Interrupt Handler (IH;) Overhead

The overhead associated with the first interrupt handler (IH;) is given by the following
equation:

IH; = (time to update clock) + (time to schedule next interrupt) +
(time to scoop messages)

The time needed to update the system clock and to schedule the /O Completion Interrupt is
constant, and should be relatively small. Both these events are executed in assembly lan-
guage routines. The time to scoop messages is a function of the number of packets that ar-
rived in the processor's receive queue since the last time a scoop was executed.

4.2.1.2. Rate Group Dispatcher - Part One (RGD;) Overhead

The time needed to execute the first part of the rate group dispatcher (RGDj) can be sum-
marized with the following equation:

RGD; = (time to update congruent time) + (time to check for RGD; overrun) +
(time to check for task overruns) + (time to set up next RG interval) +
(time to schedule IOD)

With the exception of checking for task overruns, all the components of RGDj are con-
stant. Checking for task overruns is a function of the number of tasks which were sched-
uled to suspend themselves during the previous minor frame.

4.2.1.3. 10 Dispatcher (I0D) QOver
The overhead associated with the 10 dispatcher task is given below:

IOD = (time to increment frame counter) + (time to start IOR execution) +

(time to wait for IO to complete) + (time to read input data)
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The time to increment the frame counter is constant and is negligible (one ‘add' statement in
Ada). The other constant is the time to wait for IO to complete. This is simply a wait of a
duration chosen by the application programmer to ensure that any outward-bound IO is
finished before any attempt is made to read incoming IO data. If IO is strictly incoming or
strictly outgoing, this wait can be minimal. The wait is really only necessary for IO that
sends out data to some device and then awaits a reply (in the form of incoming data) from
that device.

The two remaining constituents of the IOD overhead are variable and depend on the type
and amount of 10 activity to be performed during a given minor frame. The time to start
the execution of 10 requests depends on the number of 10 requests scheduled to run this
minor frame that have outgoing data, and it also depends on the amount of data each IO re-
quest sends. Finally, the time to read input data depends on the number of IO requests
which have incoming data and on the amount of incoming data.

4.2.14. Interrupt Handler (IH3) Overhead

The overhead associated with the second interrupt handler is the same as that given for the
first interrupt handler and is repeated below:

IH; = (time to update clock) + (time to schedule next interrupt) +
(time to scoop messages)

Even though both instances of the interrupt handler are modeled by the same equation, in
general the overheads associated with IH; and IH> are different. This is because the time
to scoop messages will vary with the number of packets present in the receive queue for the
processor. Typically, the time interval between the occurrence of IH; and IHj is less than
the time duration from IHj to the next occurrence of IHj;. This implies that more packets
may arrive in the receive queue during the interval from IH; to IHj, and therefore the mes-
sage scoop time should generally be longer for IH; than IHj3.

42.1.5. Rate Group Dispatcher - part two (RGD2) Overhead
The execution time for the second part of the rate group dispatcher (RGD>) can be quanti-
fied as follows:

RGD, = (time to update congruent time) + (time to check for RGD | overrun) +
(time to check for IOD overrun) + (time to send queued messages) +
(time to update queues) + (time to schedule RG tasks) +

(time to increment frame count) + (time to set up 10 interval)
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Most of the constituents of RGD2 listed above involve simple housekeeping chores and
have constant execution times. The three areas of interest are the time to send queued mes-
sages, the time to update queues, and the time to schedule rate group tasks. The time to
send queued messages is a function of the number of tasks that suspended themselves
during the previous minor frame and the number of message packets that each task had en-
queued since the last time its queue was sent. The time to send queued messages also
varies with the amount of contention for NE service. The OS overhead model assumes no
contention; the effect of contention on the send_queue time is explored in Section 4.2.
The time to update a task's queue is a function of the number of packets received and the
number of packets read since the last time the queue was updated. The time to schedule the
RG tasks is a function of the number of RG tasks that are to be scheduled this minor frame.

4.2.1.6. Fault Detection Identification Recoy EFDIR) Qver,

The overhead of running the Local FDIR task is the same as enqueueing a one-packet mes-
sage; this is the entirety of the Local FDIR task.

FDIR = (time to enqueue message to System FDIR task)

The Local FDIR task simply sends a message to the System FDIR task, and the time
needed to enqueue a one-packet message is constant.

4.2.1.7. 10 Source Congruency Manager (10SC) Overhead

The IO Source Congruency Manager ensures all members of a redundant virtual group re-
ceive a copy of any input read by another member. The overhead associated with the IOSC
task is given below:

I0SC = (time to exchange input data among VG members)

The time to exchange the input data depends on several factors. The most important factor
is whether or not any input data was read at all. If no data were read in, there is none to
exchange, and the IOSC overhead will be minimal. The IOSC overhead increases as the
amount of incoming data increases. Also important in determining the execution time of the
IOSC task is the number of 10 requests executed during the current frame that involved in-
coming 1O data.

42.1.8. 10 Pr ing Task (IQP) QOver

The IO Processing task is responsible for ensuring that all members of a VG performing
redundant IO agree with one redundant input value. This usually involves some data
smoothing or averaging. For instance, the average of three sensor values could be used as
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the single input value. This processing or smoothing of the input data is specific to the
application, and can vary widely as far as execution time is concerned. The IOP overhead
is given below:

IOP = (time to process input data)

Note that there are four IOP tasks, one for each rate group.

4219, 0OS Qverhead Summary

In summary, the total OS overhead for a minor frame is given by:
OH =1H; + RGD; + IOD + IH; + RGD3 + FDIR + 10SC + IOP

Many components of this equation have execution times that are constant. Other compo-
nents are variable and depend upon such factors as the system configuration or amount of
message traffic. Looking at the overhead in this manner, the total OS overhead can be
written as a constant value plus some functions of different system parameters. This equa-
tion is given below:

OH = Constant + f(number of tasks) + g(number of message packets)
+ h(amount_and_type_of 10)

The total overhead is a function of the number of tasks and of the distribution of these tasks
among the four rate groups. It is also a function of the number of message packets that
each task sends. In addition, the amount of overhead is a function of the type and quantity
of IO activity.

One aspect of system performance that is not accounted for in the OS overhead model pre-
sented in this section is contention for NE service by PEs. This occurs when more than
one PE is serviced by a particular NE. The OS overhead model was developed using a
simplex processor which did not have to contend for NE service; only one prototype NE
and a limited number of PE boards were available when the overhead model was devel-
oped. In this regard, the OS overhead model provides a lower bound on the amount of
system overhead. The effect of contention on system performance is examined by the
model presented in the following section.

4.2.2. Contention Model

The second model developed to analyze AFTA system performance examines the con-
tention among PEs for NE services. Each processor sends its queued message packets
during the second part of the rate group dispatcher. If several PEs are sending packets at
the same time, they must wait for the NE, which services the PEs in round-robin fashion.
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This contention results in performance delays because the PEs busy-wait (i.e., continu-
ously poll the NE to see if it is ready) for each packet to be serviced before enqueueing the
next one. Since performance delays can be critical in real-time systems, it is important to
understand the effects of this contention on system performance by developing an analytical
model.

This section describes the model developed to analyze the delay times associated with con-
tention. This contention model can be used to determine the busy-wait delay for each PE as
a function of the phasing of the eight PEs.

4.2.2.1. The Model

The contention model is developed without using traditional queueing theory concepts.
Due to the periodic, real-time characteristics of the operating system, NE contention can not
be modeled using a simple Markovian birth-death queueing model; the PEs send their mes-
sage packets once during each rate group frame, so the assumption that packet arrivals are
exponentially distributed is not valid for AFTA. Queueing models with generalized distri-
butions could be used, but the mathematical complexity of these models quickly becomes
excessive. Instead, we have developed a contention model based on empirical performance
data.

The following three sections describe the model used to demonstrate how contention affects
the amount of time needed by a PE to send its message packets to the NE. First, the PEs'
use of the NE to vote and deliver messages is described. Then, an example is given
demonstrating how contention arises when more than one PE is sending packets at the
same time. Finally, a description of the assumptions used to simplify the model is given.

4.22.1.1. Processing of Message Packets

Tasks that wish to send messages must first decompose each message into 64-byte packets
and place them in a queue in the PE's local memory. When the rate group dispatcher (part
two) executes during the following minor frame, these message packets are sent to the NE
one at a time during execution of the send_queue procedure. The queued packets are
sent to the PE's transmit queue, which is located in a dual-port RAM memory shared be-
tween the PE and the NE. This is shown in Figure 12. Each of the possible eight PEs
connected to a NE has its own transmit queue. The packets are sent one at a time because
the capacity of the queue is only one packet. The PE can not send a second packet to the
transmit queue until the first one has been removed by the NE. If the PE has more than one
packet to send and the transmit queue is full, the PE must wait until the NE empties the
transmit queue before the PE can transfer the next packet to the transmit queue.
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The NE is notified of a packet arrival from the PE in the transmit queue via a System
Exchange Request Pattern (SERP). The SERP is a string of bytes describing the current
state of the transmit and receive queues for each processor in the system. When a packet
arrives in a transmit queue, a status bit is set, and the next SERP will indicate the arrival of
the packet. The NE is not aware of the presence of the packet until the SERP is processed.
Therefore, there will be a delay from the time when the packet arrives in the transmit queue
until the NE has processed the SERP. If the status bit is set immediately before the SERP
is exchanged, the delay will be minimal and will equal the amount of time needed to pro-
cess a SERP (approximately 16 psec). If the status bit is set just after a SERP was sent,
the delay will be maximal and will equal the time needed to process two SERPs
(approximately 32 psec).
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Figure 12. Message Packet Processing

Once the NE is aware of the arrival of a packet, it can begin to process it. The processing
done by the NE depends on the class of the packet being transmitted. A Class 0 message
requires minimal processing time since no data is involved. Class 1 messages (voted mes-
sages) are typically the most common type of message. Processing a Class 1 packet in-

Page 43



volves receiving redundant copies of the packet from the other PEs (connected to different
NEs) in the virtual group. These copies are voted, syndrome information is attached, and
the voted copy is delivered to the destination PE. A Class 2 packet (source congruency
message) undergoes a two-round exchange with the other NEs before voting and delivery.

After processing a packet, the NE delivers the packet by placing it in the appropriate receive
queue, as shown in Figure 12. Each PE has its own receive queue located in the dual-port
RAM shared among the NE and its eight PEs. The capacity of each receive queue is 64
packets. Packets are transferred to the destination PE via a scoop call, and the packets are
reassembled into messages when the destination VG executes a retrieve_message
system call.

4.22.1.2. Contention for NE Services Among Two or More PEs

As mentioned earlier, contention during message packet transmission occurs if more than
one PE is sending packets at the same time. The PE must wait for the NE to clear its
transmit queue before the next packet can be transferred to the queue. If only one PE is at-
tached to the NE, there is no delay. If more than one PE is assigned to the NE, the delay
is a function of how many other PEs are sending packets at the same time.

An example demonstrating how the busy-wait time can vary is given in Figure 13. The
time needed for a PE to transfer a packet from its local memory to the transmit queue is
constant (approximately 57 psec). As shown in Figure 13, the NE will be informed that
PE_0's transmit queue is full once the NE has processed the SERP containing this infor-
mation. In the figure, the transmit queue was filled at time t1, and the SERP processing
was completed at time t2. Once the SERP is processed, the NE is able to process the
packet, and the PE is then able to transfer the next packet when the packet processing is
finished and the transmit queue is cleared at time t3. Thus, PE_0 had to wait from time t1
to time t3. Notice that once PE_0 has filled the transmit queue a second time, it has a much
longer delay before it can transfer a third packet. This is because when the queue is filled at
time t4, the NE is busy processing a packet from PE_2 and thus can not immediately
empty PE_0's transmit queue. It is not until time t6 that the NE finishes processing the
SERP that indicates PE_0's queue is full. Since the NE services the PEs in round-robin
fashion, PE_Q will have its queue emptied at time t7. Figure 13 shows that the t4-t7 time
interval is greater than the t1-t3 time interval. The amount of time spent by PE_0 waiting
for NE access increased because it had to contend with other PEs for NE service. Figure
13 also indicates the phasing in the system for this example. The phasing between two PEs
is the difference in time between the start of each of their minor frames.
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Figure 13. Contention Timeline

The result of this increased wait between packets is an increase in the amount of operating
system overhead and a corresponding decrease in the amount of time available for execut-
ing application tasks. The OS overhead increase is a result of the increased time needed for
the rate group dispatcher (part two) to execute, which is a result of the increased amount of
time spent executing the send_queue procedure.

4.2.2.1.3. Simplifying Assumptions

To facilitate the modeling and simulation of this system, some simplifying assumptions
have been made. These assumptions are listed below, and a justification for each is given.

The time delay for the NE to realize that a transmit queue has been filled is constant. The
NE is made aware of a full transmit queue when it processes a SERP. The time delay from
when the queue has been filled to when the NE realizes it, varies as a function of when the
queue was filled. If it was filled just before a SERP is exchanged, the time delay is the
time to process one SERP (16 psec) . If it was filled just after a SERP was exchanged,

the time delay is the time to process two SERPs (32 psec). Thus, the time delay is always
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somewhere between 16 psec and 32 psec To simplify the simulation, we will assume the
time delay is a constant and equals 25 psec.

The amount of time needed for the NE to vote and deliver a packet is constant. This as-
sumption is a combination of the assumption that only Class 1 (voted messages) packets
are transmitted and the assumption that the redundant members of the virtual group are
tightly synchronized. Since the vast majority of system message traffic is expected to be
Class 1 messages (possibly over 90%), we will assume that all packets are Class 1 in order
to simplify the model. Then, we will also assume the NE processing time per Class 1
packet is constant. The only variance that could exist is due to any time difference in the
arrival of redundant copies of the packets to be voted. Because the processors are only
loosely coupled, individual copies of the packets may arrive at different times. However,
the processors are synchronized just before the rate group dispatcher (part two) is executed,
so the skew among the processors should be minimal and can be ignored. Therefore, the
NE processing time for packets will only consist of the time needed to vote the packet, at-
tach syndrome information, and deliver the packet. This time is assumed to be constant
and equal to 10 psec.

Operating system overheads are identical for each PE for each frame. The operating system
overhead generally varies with the minor frame number. For example, minor frame 0
usually has the largest OS overhead since all tasks, regardless of their rate group, have
suspended themselves and are ready to send queued messages. Minor frame 1 usually has
a minimal overhead since only RG4 tasks can send their queues. We assume the OS over-
head variance is negligible, and that it is identical for each minor frame for each PE.
Therefore, each minor frame on each PE appears like every other minor frame. Without
this assumption, the time within the minor frame when RGDy was executed (and thus
when the queued packets can be sent) would vary from frame to frame and would be a
function of the number of tasks, the distribution of tasks among the four rate groups, the
number of packets enqueued by each task per minor frame, and the amount and type of 10
performed by each task per frame.

The phasing among the eight PEs is constant. The phasing between two PEs is the differ-
ence in time between the start of each of their minor frames. In Figure 14, an example of
phasing among eight PEs is given. The phasing between PE_0 and PE_1 is indicated in
the figure. We assume that the phasing from one PE to its neighbor is the same. The
amount of phasing is important because it determines how much overlap there is when PEs
are performing a send_gueue call. The worst case, in terms of contention, would be
zero phasing; then, all PEs would be sending their queues at the same time, and contention
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would be maximized. During simulation, the phasing is varied to note its effect on con-
tention.
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Figure 14. Phasing Among PEs

There is no contention for the VMEbus which connects the PEs to the NE. One detail that
has been ignored so far is the bus connecting the PEs to their NE. The prototype AFTA
uses VMEDbus to connect the PEs and their NE, and it is possible that the PEs may have to
contend for the VMEbus while transferring their packets from local memory to the transmit
queue. We assume that there is no contention among PEs for use of the VMEbus.
Consider the worst case scenario for data traffic over the VMEDbus (zero phasing among the
eight PEs). In this case, all eight PEs attempt to send a 64-byte packet over the VMEbus at
the same time. Empirical performance data show it takes approximately 60 psec for a sin-
gle PE to transfer a packet from local memory to the transmit queue. Therefore, at worst
512 bytes are being sent over the VMEbus in a 60-psec period, which corresponds to a
data rate of 8.5 Mbytes/sec. The VMEbus has been rated at 40 Mbytes/sec, so the worst
case amount of VMEDbus traffic only uses about 21% of the available bandwidth. As a re-
sult, we consider the assumption of no VMEbus contention valid.
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4222. C ion Simulati

An example timeline for the contention model is given in Figure 15. In this example, three

PEs each send two packets to the NE for processing.
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Figure 15. Contention Model Timeline

During simulation, a number of parameters can be varied to note their effect on the time it

takes a PE to send its message packets. These parameters are listed below:

xfer pkt

pr_serp

pr_pkt

num_pkts

num_pes

This is the time it takes a PE to transfer a packet from its local mem-

ory space to the transmit queue located in the dual-port RAM shared
by the PE and NE. The default value is 60 psec.

This is the time it takes a PE to process a SERP. This value is as-
sumed to be constant, and the default value is 25 psec.

This is the time needed by the PE to process a packet. Processing a
packet includes voting redundant copies of the packet and delivering
the voted packet to its destination. The default value is 10 psec.

This is the number of packets each PE sends during each frame.
For simulation purposes, all PEs send the same number of packets.
The default value is 10 packets per PE per frame.

This is the number of PEs connected to the NE. The default value is
8 PEs (the maximum possible).
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phasing The phasing between two different PEs is the difference in time
between the start of each of their minor frames. It is assumed that
the phasing among PEs is constant, as shown in Figure 14. The de-
fault value for phasing is 0 psec; this represents worst case con-

tention.

The simulation software is written in C. It is menu-driven, and the user can change any of
the simulation parameters he or she desires. The simulation provides the length of time
needed by each PE to send the indicated number of packets under the given conditions.

4223 Result, imulation

Of the parameters listed in the previous section, some are of more interest to application
engineers than system designers. Application engineers are concerned with the number of
PEs connected to a NE, the number of packets send by each PE, and the phasing among
the PEs; these are the parameters they control. Their goal is to minimize the time needed
for a PE to send its packets within the time constraints of the application task. The effect of
varying the number of packets sent by each PE is shown in Figure 16. By reducing the
number of packets per PE the delay in sending the packets is reduced, and this is shown in
the graph. For a given number of packets, different amounts of phasing can result in slight
improvements in performance. However, the performance improvement is not very signif-

icant.

1400

k)

] 1200

2

. == 10Piks
b4 1000

&

= —p= 8 Pkis
- 800 8

&

Q

; 600 as@s: §Pkis
a

-

8 400 reugpe 4 Pits
-3

E

-

200 il ITY YOY IXY 10T IGLY IGY 1L IXY ILY | me@r= 2Pkis

T T 14 1 J 1J °| 1
0 200 400 600 80O 1000 1200

Phasing (usec)

Figure 16. Effect of Varying Number of Packets and Phasing on Time to Send Message
Packets

Another parameter of interest to the applications engineer is the effect of reducing the num-
ber of PEs connected to a NE. Simulation results showing the impact of varying the num-
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ber of PEs on the time needed by each PE to send its packets are given in Figure 17. With
small amounts of phasing, the number of PEs has some effect on the time needed to send
packets. However, the improvement is not large. Consider the case of no phasing. With
eight PEs, the time delay is 1230 [sec, but reducing the number of PEs to four only de-

creases the time delay to 1100 psec. Reducing the number of PEs by 50% results in an
improvement of only 10.6% in performance. It is also interesting to note that as the phas-
ing increases, the effect of reducing the number of PEs becomes negligible.

Though not shown in Figure 17, the time to send packets for one PE is of interest because
it indicates the extent to which contention can increase system overhead. With only one PE
connected to a Network Element, no contention can occur; the simulation predicts a 1035
isec time delay for one PE to send its queued packets. The worst-case contention occurs

when eight PEs are connected to one NE, and the amount of time needed for a PE to send
10 packets in this configuration is 1230 psec. Therefore, contention can increase the

amount of overhead in sending packets by 18.8% compared with the case when no con-
tention occurs.
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Figure 17. Effect of Varying Number of PEs and Phasing on Time to Send Message
Packets

System designers are also interested in ways to reduce the amount of time spent sending
packets. The parameters controlled by system designers include the time it takes the NE to
process a packet, the time it takes for the NE to process a SERP, and the time needed by a
PE to transfer a packet from its local memory space to the dual-port RAM shared by it and
the NE. Figure 18 shows the effect of varying the process packet time and varying the
transfer packet time. For a transfer packet time of 60 psec, an 80% reduction in process
packet time (from pr_pkt = 10 psec to pr_pkt = 2 pusec) results in a 26.5% performance

improvement.
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Figure 18. Effect of Varying Process Packet Time and Transfer Packet Time on Time to
Send Message Packets

The system designer also determines the time needed by the NE to process a SERP. Figure
19 presents the simulation data for different values of the process SERP time. As ex-
pected, reducing the process SERP time reduces the delay needed by a PE to send its
packets. With a transfer packet time of 60 psec, a reduction in the process SERP time of

80% (from pr_serp = 25 psec to pr_serp = 5 psec) results in a performance improvement
of 24.5%. This is approximately the same effect as varying the process packet time from
10 psec to 2 psec.
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Figure 19. Effect of Varying Process SERP Time and Transfer Packet Time on Time to
Send Message Packets

The goal of both the applications engineer and the system designer is to reduce the amount
of time needed for a PE to send its message packets, even when contending with other PEs
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for NE service. To find out which parameter has the greatest single impact, each parameter
was decreased by 50% of its default value. The results are given in Figure 20. This graph
shows that the largest improvement in performance for a given number of packets is ob-
tained by reducing the transfer packet time by 50%. This implies that if effort can only be
spent reducing one parameter, it should be spent reducing the transfer packet time. The
transfer packet time can be reduced by using direct memory access or by using a faster bus.
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Figure 20. Effect of Reducing Each Default Parameter by 50% on Time to Send Message
Packets

The simulation results presented in this section show that application engineers should
minimize the amount of message passing in the system to minimize the effects of contention
on the time needed by a PE to send queued message packets. System designers should re-
duce the time needed by a PE to transfer a message packet from its local memory space to
the dual-port RAM shared by the PE and the NE. This could be accomplished by using di-
rect memory access to accomplish the transfer. '

4.3. Performance Measurement Methodology

There are numerous advantages associated with collecting measurements of system perfor-
mance. First, empirical measurements can be developed into analytical models which can
be used to predict system performance under various configurations and workloads.
Second, the empirical performance data can be used to measure the system overhead, a pa-
rameter critical for real-time applications. Finally, when the performance measurements are
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collected concurrently with prototype operating system (OS) development, potential per-
formance bottlenecks can be removed at an early and cost-effective stage of development.

Raw performance data is collected through the use of software probes. The probes are a
software routine which records relevant system information, including the value of the
system clock. These probes are placed around or directly inside the code of the operating
system procedures of interest. During execution, the probes are activated along with the
OS procedure of interest. The probes record execution times and other parameters of inter-
est in the processor's local memory. The real-time AFTA system is not suited to perform
the analysis of this raw data, so the data are transferred to a host VAX computer for reduc-
tion and analysis. The AFTA IO System Services are used to move the data, via an Ethernet
link, from the PE to the host. Figure 21 shows the path the performance data take from
initial storage in the debug log to final analysis on the VAX.
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program
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Figure 21. Performance Measurement Overview

4.3.1. Software Probes

Software probes are the basic data collection tool. A similar approach to recording perfor-
mance information was taken by researchers at Carnegie Mellon University who used
software "sensors" in their Parallel Programming and Instrumentation Environment
[Leh89]. A description of software probe use with AFTA performance measurement is
given by describing the data that is collected and then providing an example of how this
data can be used to determine the time it takes the operating system to enqueue a message.
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4.3.1. 1. Descripti Data Recorded re Pr

Software probes are the mechanisms used to collect performance data. A software probe is
an Ada procedure which uses an assembly language routine to store information in an area
of the processing element's memory known as the debug log. Each entry in the debug log
contains three fields of information:

- label field
- parameter field
- timestamp field

The label field records a tag to the probe in the source code. Since numerous software
probes are to be imbedded in AFTA procedures and tasks, it is necessary to identify the
saved data with the probe which stored it. The tag in the label field uniquely identifies
which probe recorded the data for that debug log entry.

The parameter field is used to store a value of pertinent system information. The choice of
what data to store in this field depends on what aspect of system performance the probe is
measuring. For example, the overhead associated with the delivery of queued message
packets by the Network Element (via the send_queue procedure) depends on the number
of packets queued. Since this is an independent variable, it is useful to record the value in
the parameter field of the debug log entry. Likewise, some system overheads are a func-
tion of the minor frame number. Probes used to measure those overheads store the current
frame number in the parameter field.

The final data field in each debug log entry is the timestamp field. The value of the system
clock is automatically stored in this field each time the software probe is activated. The
system clock value is a 32-bit quantity and has a resolution of 1.28 pusec per tick. The

clock wraps around to O after reaching its maximum value (this occurs after approximately

92 minutes).
4.3.1.2. Example of Software Probe Use

As an example of how the debug log entry fields are used to measure systemn performance,
consider a method to determine the length of time for the operating system to queue a mes-
sage for delivery. Software probes are inserted in an application task just prior to, and im-
mediately after, calling the queueing procedure. This is illustrated in Figure 22.
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while size < max_size loop
debug_log(16#1111#, size);
queue_message();
debug_log(16#1112#, size);
end loop;

Figure 22. Placement of Software Probes

The software probe is activated by the call to the Ada procedure debug_log. Two pa-
rameters are passed during the call to debug_log. The first parameter is a number that
will be stored in the label field of the debug log entry. For the first software probe shown
in Figure 22, the hexadecimal number 1111 is used as the label (or tag). The label field for
the second software probe (just after the queue_message procedure) contains 1112 hex.

The second data passed to the debug_log procedure is a variable whose value will be
stored in the parameter field of the debug log entry. When collecting performance data on
the time to queue a message, it is important to know the size of the message being en-
queued. This information can be stored in the debug log entry's parameter field by includ-
ing the variable "size" in the call to debug_1log.

In addition, the value of the system clock at the time debug_log is executed in stored in
the timestamp field of the debug log entry. Two consecutive debug log entries for en-
queueing a 64-byte message would be similar to those given in Table 5.

label parameter timestamp
(size)
m
1111 64 1645338
1112 64 1645449

Table 5. Representative Use of Debug Log Data Fields

The data contained in these debug log entries is used to determine how long it took the
system to queue the message. Although the processing of the debug log data is discussed
more thoroughly below, a brief overview of the process follows in order to explain the use
of the data fields. First, the timestamp for the probe labeled 1111 is subtracted by the

Page 55



timestamp for the probe labeled 1112. This number is then multiplied by the resolution of
the clock (1.28 microseconds per clock tick) to give the time needed to queue the message.
In addition, the overhead of making the call to debug_1log is also subtracted out. The re-
sult of these operations is the time it took to enqueue the message.

4.3.2. Transfer of Data from th A to the Host V.

The software probes store debug log entries in the local memory of the AFTA processing
element. However, the programs written to analyze this data run on a VAX computer, so
the data must be transferred from the AFTA to the host VAX for processing. The AFTA
IO System Services are used to oversee the data's transfer via Ethernet to the host VAX.
An IO application task consisting of an Ethemet output IO request was created to perform
the transfer of debug log data from the AFTA to Ethernet. On the VAX end of the Ethernet
connection is a program which continuously polls the Ethernet port for the arrival of new
data. Once the data is read in, it is stored in a VAX file for off-line statistical analysis.

4.3.3. Data Analysis

At this point in the performance measurement process, raw performance data has been col-
lected and transferred to the host VAX. This raw data must be processed to obtain desired
and meaningful results. This processing occurs in two phases. First, the time interval
between two debug log entries (taking into account the clock resolution and the overhead of
making the calls to the debug log procedure) must be determined. Second, the sorting of
these time values (for example, by message size) and the performing of statistical functions
(such as determining the average time, maximum time, minimum time, standard deviation,
and counting the number of samples) is accomplished.

4 3.3 1 Determinati Time Interval

In determining the time interval between two debug log entries, the analysis program uses
the label field of the debug log entries to identify the data associated with each software
probe. The user supplies the analysis program with the labels for each pair of appropriate
software probes. For instance, in the queue message example, the pertinent labels are 1111
hex and 1112 hex. The analysis program searches through all the debug log entries stored
in the VAX file, and saves entries that have the given labels. These saved entries are then
paired, and their timestamp values are subtracted. This value gives the number of clock
ticks that occurred between the activation of the pair of software probes. To convert this
number to a time value, it is multiplied by the clock resolution, which is 1.28 usec per
clock tick. One final bit of processing is needed before determining the length of the time
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interval. The overhead of activating the software probe (the time it takes to make the de-
bug_log procedure call) needs to be subtracted from the time interval value.

To determine the overhead for software probe activation, a number of debug_log proce-
dure calls were sequentially executed. As shown in Table 6, there was a 22 psec time de-
lay between the activation of two software probes. This implies that the overhead that
should be subtracted between a pair of consecutive probes is 22 jtsec. This is the overhead
value that would be subtracted for the queue message example because the probes are in
consecutive debug log entries. However, sometimes other debug entries are located in
between the two entries that are of interest. For example, suppose we want to measure
the length of time it takes for a task to execute, and within that task is a queue message call
that we also want to measure. The task measurement probes would not be consecutive en-
tries in the debug log because the queue message measurement probes would be located
between them. Since there are two nested probes between the task probes, the overhead
associated with the queue message probes also needs to be subtracted from the time for the
task. Therefore, the number of intervening probes must be counted, so the overhead for all
these probes can be taken into account. Hence, 22 pisec should be subtracted as additional

overhead for each intervening software probe activation.

# of de- | Avg Time | Stand Dev | Max Time | Min Time | # Samples
bug_log (usec) (psec) (usec) (usec)
calls _ _

2 22 3 25 17 177

3 43 2 51 43 177

4 66 3 69 61 177

5 87 2 94 87 177

_6 110 3 112 106 177

7 131 2 138 130 177

Table 6. Overheads Associated with debug_ 1og Procedure Calls

4332, Statistical A is of Time D

Once the overhead has been accounted for, the time interval between two debug log entries
is known. These values are saved in an array, and it is easy to determine the average time,
standard deviation, maximum time, minimum time, and number of samples in the array.

These results are displayed on the monitor and stored in a file.

The analysis program can also sort the data according to the contents of the parameter field
of the debug log entries. For the queue message example, the execution times are sorted

according to message size. For each message size, the average time, standard deviation,
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etc. are given as well as overall statistics. As before, the results are displayed on the moni-
tor and stored in a data file for later analysis.

4.4. Performance Measurement Results

Using the methodology described above, empirical performance data for AFTA operating
system overheads were collected. This section summarizes the measurements.
Performance data for each of the operating system tasks are presented in the order in which
they occur during each minor frame (Figure 11).

4.4.1. System Configuration

Before giving performance measurement results, the AFTA configuration used during the
data collection is described. All performance measurements were taken on a prototype
AFTA Ada operating system running on a 20 MHz 68030-based Motorola MVME147S-1
Processing Element. Caches and compiler optimizations were turned on. The system used
the AFTA Brassboard Network Element.

Since many aspects of system performance are dependent upon the distribution of tasks,
the task list used for all these measurements, unless stated otherwise, is given below. The
user application task simply sent messages of varying length to itself, which it later read it-
self.

RG4 tasks (six) RG3 tasks (one)
fdir (local) 10_processing_task_rg3
system_fdir
10_source_congruency_mgr RG?2 tasks (one)
io_processing_task_rgd io_processing_task_rg2
io_application_task (user task)
application_task (user task) RG] tasks (one)

10_processing_task_rgl

4.4.2. Interrupt Handler Overhead

The interrupt handler (IH) updates the clock time, sets the next interrupt time, and scoops
all queued messages. The IH code is in assembly, except for the scoop procedure which
is in Ada. The time to scoop messages dominates the IH overhead, and no measurements
have been taken of the assembly code, whose execution time is negligible. The perfor-
mance data for the scoop procedure is given in the following section.
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4421 Message

The scoop procedure transfers message packets from a PE's receive queue in the Network
Element's dual-port RAM to the PE's local memory space where they are reassembled into
complete messages. The time to scoop messages is dependent on the number of packets to
be scooped, as shown in Table 7.

num avg std dev max min time| # sam-
pkts time time ples
(64 (usec) (nsec) (usec) (pusec)
bytes)
2 321 3 328 320 18
3 433 1 434 433 18
4 542 3 547 539 18
S 652 1 653 652 17
6 763 3 766 759 17
7 871 3 877 864 17
8 981 3 984 977 17
9 1091 2 1097 1089 17
10 1200 3 1203 1196 17
11 1310 3 1315 1308 17
12 1420 2 1422 1414 17

Table 7. Scoop Message Execution Time as a Function of Number of Packets

4.4.3. Rate Group Dispatcher (Part One) Overhead

The primary functions of the first part of the rate group dispatcher (RGD) are to check for
task overruns and to schedule the 10 dispatcher for execution. Overall, the execution time
for RGD varies as a function of the minor frame number, as shown in Table 8. The rea-
son for this variance is that different minor frames have a different number of rate groups
that have reached their RG boundaries. When a rate group reaches its boundary, all tasks
within that rate group should have completed their iterative cycle. RGDj ensures that all
tasks that should have completed actually did, and the number of tasks to check depends on
the number of rate groups that have reached RG boundaries.
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minor RG avg std dev max min time| # sam-
frame |boundaries| time (nsec) time (usec) ples
(usec) (usec)

0 4,3,2,1 168 0 168 168 20
1 4 130 2 137 130 20
2 4,3 143 0 143 143 20
3 4 130 0 130 130 20
4 4,3,2 156 0 156 156 20
5 4 130 0 130 130 20
6 4,3 143 2 150 143 19
7 4 130 0 130 130 19

Table 8. Overall Rate Group Dispatcher (Part One) Execution Time as a Function of
Minor Frame Number

Notice that RGD; executes longest during minor frame 0. This is because all rate group
tasks have completed their iterative cycle at the completion of minor frame 7. Therefore,
RGD1 has to check for overruns of tasks in every rate group. RGD1 has a minimal execu-
tion time during minor frames 1, 3, 5, and 7 because during those frames it only needs to
check RG4 tasks for overruns.

The overall execution time for RGDj can be broken down into three main segments: (1) the
time needed to record the congruent time value and to check for RGD (part two) overrun,
(2) the time to check for rate group task overruns, and (3) the time needed to set up the next
rate group interval and schedule the 10 dispatcher.

44.3.1, Record Congruent Time Value. Check for RGD Overrun

At the beginning of execution, RGD; records the congruent time value and then verifies
that the second part of the rate group dispatcher (RGD3) did not overrun during the previ-
ous minor frame. The time to accomplish these duties, as seen in Table 9, is constant and
thus does not vary with the frame number or task distribution.

avg |std dev] max |min time| # sam-
time (usec) time (usec) ples
(Lsec) (usec)

21 0 21 21 158

Table 9. RGDj Update Congruent Time Value and Check for RGD, Overrun Execution
Time
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4.4.32. Check for RG Task Overruns

RGDj determines whether any of the tasks that were to complete their iterative cycle and
suspend themselves during the previous minor frame overran the frame boundary. The
time needed to accomplish this is a function of the number of RG tasks that were scheduled
to suspend themselves during the previous minor frame. This is shown in Table 10. This
segment of RGD is the only one that does not have a constant execution time.

num RG | minor avg std dev max min time | # sam-
tasks frames time (Lsec) time (usec) ples
(Usec) (usec)
6 1,3,5,7] 58 0 58 58 79
7 2,6 69 3 71 65 39
8 4 79 3 34 G 20
9 0 90 0 90 90 20

Table 10. RGDj Check for Rate Group Task Overruns Execution Time as a Function of
Number of Rate Group Tasks

44.3.3. Set Up Next RG Interval. Schedule IO Dispatcher

Before finishing execution, RGD sets up the next rate group interval; this entails determin-
ing when the next interrupt should occur. RGDj then schedules the IO dispatcher to exe-
cute next. These duties are done every minor frame, and the amount of time needed to do
them is constant for all minor frames. The execution times are summarized in Table 11.

avg | std dev max |[min time| # sam-
time (usec) time (usec) ples
(Usec) (hsec)

48 3 53 47 158

Table 11. RGDj Set Up RG Interval and Schedule IO Dispatcher Execution Time

4.4.4. 10 Dispatcher JOD) Overhead

10 performance data collection is incomplete because the AFTA IO System Services are not
completely implemented, and the sections that are implemented have not been optimized.
IO is application-specific, and as a result it is very difficult to make general statements
about IO performance. However, to provide an estimate of IO performance, some data
were collected using restricted I0. In particular, all IO was outbound-only and used
Ethernet to send out the data.
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The 10 dispatcher (IOD) consists of three main sections. First, it determines which IO re-
quests should be executed this frame and then starts their execution. Second, it waits for
the IO requests to finish execution. Finally, after waiting, IOD reads any incoming IO
data. Each of these activities is discussed in the following paragraphs.

IOD determines which IO requests should execute during the current minor frame by
checking the IO execution table, and it then starts the execution of each of these requests.
For outgoing 10 requests using Ethernet, IOD must first transfer the data to an area of
memory used for Ethernet transfers before starting the 10 request. This transfer is done on
a byte-by-byte basis. The time required to transfer the data varies with the number of bytes
to be transferred. This transfer time was measured and is approximately 5 psec for each
byte sent out. This implies that IOD would spend 500 psec transferring data for an IO re-
quest consisting of sending out 100 bytes of data.

After starting the execution of all 10 requests, 10D waits while the execution takes place.
The amount of time spent waiting depends on how long it takes to execute the IO request,
which is dependent on the hardware device executing the IO. The wait period is a constant
and should equal the longest amount of time needed to execute the 10 requests for any mi-
nor frame. Since no data on IO execution time has been collected, the set IOD wait period
is currently an arbitrarily large number.

IOD's last duty is to read all incoming IO data. No performance data was collected for this
because all IO was strictly outgoing IO.

4.4.5. Rate Group Dispatcher (Part Two) Overhead

The primary functions of the second part of the rate group dispatcher (RGD>) are to send
queued message packets and to schedule rate group tasks for execution. A summary of the
overall RGD7 execution times, sorted by minor frame number, is given in Table 12.
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minor |RG bound- avg std dev max |min time| # sam-
frame aries time (nsec) time (usec) ples
(Lsec) (usec)

0 4,3,2,1 1454 409 2134 710 20
1 4 1190 406 1817 549 20
2 4,3 1279 402 1905 730 20
3 4 1173 394 1830 629 20
4 4,3,2 1367 388 2036 841 20
5 4 1165 374 1817 636 19
6 4,3 1317 381 1929 736 19
7 4 1197 378 1824 629 19

Table 12. Overall Rate Group Dispatcher (Part Two) Execution Time as a Function of
Minor Frame Number

As is evident from the large standard deviations in Table 12, RGD3 execution times do not
vary directly with the minor frame number. Unlike RGDj, which only varied as a function
of the number of tasks that suspended themselves during the previous minor frame, the de-
pendencies of RGD3 are more complicated. In particular, RGD, performance is related to
the number of message packets that were enqueued during the previous minor frame.
Since the number of enqueued packets can differ for a given application from one iteration
to the next, it is not meaningful to examine RGD> execution times as a function of only the

minor frame number.

It is more useful to break RGD> into several segments and then examine each segment sep-
arately. The following five sections describe the five major segments of RGD2: update
congruent time value and check for RGD and IOD overruns; send queued message pack-
ets; update message packet queues; schedule rate group tasks; and increment minor frame
number and set up IO interval for the next frame.

445 1. Update Congruent Time Value, Check for RGDj and 10D Qverrun

At the beginning of each iteration cycle, RGD, updates the congruent time value used by

each rate group and checks to see if either the rate group dispatcher (part one) task or the
10 dispatcher task exceeded its execution time bound. The time to accomplish these duties
is the same during each iteration of RGDj. A summary of the execution time data is given
in Table 13.
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avg std dev max |min time| # sam-
time | (4sec) time (usec) ples
(usec) (usec)

40 2 46 40 157 |

Table 13. RGD7 Update Congruent Time Values and Check for RGD1 and IOD Overrun

44.5.2. Send Queue

RGD;, calls the send_queue procedure once for each task that suspended itself during the
previous minor frame. send_gueue transfers enquened message packets from each PE's
local memory space to the Network Element where they are processed and delivered. The
execution time of each send_gqueue call is a function of the number of packets that were
queued by that task, as shown in Table 14. Therefore, the total amount of time RGD;
spends sending queued packets depends on the number of tasks that suspended themselves
during the previous minor frame and on the number of packets enqueued by each task.

It is important to note that the data in Table 14 was collected using only one Virtual Group.
Since only one PE was connected to the NE, no contention for NE service occurred.
Therefore, these numbers represent best case performance; if there were contention, the
send_gueue execution times would increase.

pkts avg std dev max |min time| # sam-
sent per | time (usec) time (usec) ples

task | (usec) (1sec)
0 5 3 10 2 1140
1 78 14 231 77 256
2 132 12 209 171 22
3 301 14 322 283 22
4 417 7 440 409 21
5 535 10 552 528 21
6 657 12 6384 647 21
7 770 11 797 758 21
] 390 3 909 877 21
9 1007 9 1027 950 21
10 1125 9 1146 1115 21

Table 14. RGD2 Send Queue (Per Task) Execution Time as a Function of Number of
Packets

4.4.5.3 Update Queue
RGD; calls the update_gueue procedure once for each task that suspended itself during
the previous minor frame. This procedure updates pointers used in each PE's receive
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queue, loc

ated in the dual-port RAM. The execution time of each update_queue proce-

dure call varies as a function of the number of receive_queue pointers which need to be up-

dated and

is equal to the number of packets enqueued during the previous frame. This is

shown in Table 15. The total amount of time spent by RGD> updating queues is a function

of the number of tasks that suspended themselves during the previous minor frame and the

number of packets enqueued by each task.

pkts avg | std dev max |min time| # sam-
sent per | time (Lsec) time (usec) ples
task | (usec) (usec)
0 16 3 24 11 879
1 28 3 31 24 195
2 36 1 37 36 17
3 42 1 43 42 16
4 51 3 56 48 16
5 56 2 61 55 16
6 66 3 69 61 16
7 74 0 74 74 15
8 81 3 87 80 16
9 86 1 87 86 16
10 94 3 100 93 16

Table 15.

RGD2 Update Queue (Per Task) Execution Time as a Function of Number of
Packets

The data for send_queue and update_qgueue are linear, as shown by the graphical

representation of the performance data, which is given in Figure 23.

Figure 23.
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4454 I

RGD3 schedules rate group tasks to run in the time remaining in the current frame. It does
this by calling a scheduling procedure for each rate group that reached its RG boundary
during the previous minor frame. Therefore, this scheduling procedure is called a maxi-
mum of four times by RGD7 (in minor frame 0). It is always called at least once during a
minor frame. The execution time of the scheduler is a function of the number of tasks that
need to be scheduled for a particular rate group. Table 16 summarizes the scheduler per-
formance data. To collect more data points for the time needed to schedule RG tasks, the
system configuration described at the beginning of this section was altered by adding more

application tasks.
num tasks avg std dev max |min time| # sam-
per Rate time (usec) time (usec) ples
Group | (ysec) (usec)
1 55 3 59 52 74
2 85 2 90 84 72
3 121 2 127 121 70
4 143 3 146 140 65
5 134 2 140 134 129
6 160 3 166 158 147
7 190 2 196 190 140
8 221 1 222 216 131
Table 16. RGD7 Schedule Rate Group Tasks Execution Time as a Function of Number of
Tasks Per Rate Group
4455, Increment Frame Number. Set Up I0 Interval for Next Frame

At the end of each RGDj execution cycle, the minor frame number is incremented and the
10 interval is set up for the next minor frame. These activities take place just one time per
RGD3 execution. As seen in Table 17, the execution time to perform these duties is con-
stant and is negligible compared to the total RGD» execution time.

avg std dev max min time| # sam-
time (usec) time (usec) ples
(usec) (usec)
9 3 16 8 157

Table 17. RGD, Increment Frame Number and Set 1O Interval Execution Time
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44.5.6. RGD) Summary

The overall RGD; execution time has five constituent parts. Two of these are constant, and
they account for 49 pusec of RGDj overhead. Of the other three constituents, two
(send_queue and update_queue) have execution times which are a function of the
number of enqueued message packets. The final constituent of RGD7 overhead is the time
needed to schedule rate group tasks; this is a function of the number of tasks to schedule.

4.4.6. Fault Detection, Identification, and Recovery (FDIR) Overhead

The FDIR overhead for all Virtual Groups (VGs) within AFTA is the time to execute the
Local FDIR task, except for the System VG, which executes the System FDIR task in ad-
dition to Local FDIR. Performance data for the System FDIR task are not presented be-
cause the task has not yet been fully implemented. Data for the execution times of the Local
FDIR task are given in Table 18. Local FDIR simply enqueues a one-packet message
which is delivered to the System FDIR task. Its execution time is constant, even with

faults present in the system.

avg std dev max |min time| # sam-
time (usec) time (usec) ples
(usec) (usec)

84 2 90 84 210

Table 18. Local FDIR Execution Time

4.4.7. 10 Source Congruency Manager (I0SC) Overhead

The IO Source Congruency Manager ensures that all members of a redundant VG receive a
copy of any input read by another member. The system configuration used to collect per-
formance data used a simplex VG for IO, so the IOSC execution time reported in Table 19
should be regarded as a "best case" execution time.

avg std dev max min time| # sam-
time (usec) time (nsec) ples
(usec) (pnsec)

52 1 59 52 142

Table 19. Minimal 10 Source Congruency Manager Execution Time
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4.4.8. 10 Processing T: th

The IO Processing task is responsible for ensuring that all members of a redundant VG end
up with a single input value. This involves some data smoothing or averaging. The per-
formance measurements summarized in Table 20 indicate a relatively large standard devia-
tion. This might be because there are four instantiations of this task, one for each rate
group. The IOP code is not fully implemented, and the implementation will be strongly
dependent on the application.

avg | std dev max |min time| # sam-
time (msec) time (msec) ples
(msec) (msec) _

15 12 34 2 357

Table 20. Minimal IO Processing Task Execution Time

449 T th

There are several system overheads that are not explicitly shown in the minor frame
overview given in Figure 11. These include the queue_message overhead, the re-
trieve_message overhead, and the time needed to context switch between tasks.
Performance data for these three overheads are given in the following sections.

4491, Queue Message

The queue_message procedure call is used by a task when sending a message. This
procedure decomposes the message into packets and then enqueues these packets in the
PE's local memory space for later transfer to the NE. As indicated in Table 21, the amount
of time needed to enqueue a message is a function of the length of the message.
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n(lsbg siz)e msg avg std dev max min time| # sam-
ytes size time (Lsec) time (usec) ples
(pascg(et (usec) " (usec) "

0 1 84 2 90 84 20
100 2 136 3 140 134 19
200 4 221 1 222 221 19
300 5 272 3 2738 271 19
400 7 358 1 359 358 18
500 8 410 2 415 409 18
600 10 497 2 502 496 19
700 12 546 1 552 546 19
800 13 634 2 641 633 19
900 15 718 3 722 715 19
1000 16 771 2 778 771 19

Table 21. Queue Message Execution Time as a Function of Message Size

4492, Retrieve Message

The retrieve_message procedure is used by tasks to reassemble delivered packets
into complete messages. As with queue_message, the time to retrieve a message is de-
pendent upon the size of the message. This is shown in Table 22. Notice that it takes
longer to retrieve a message of a given length than to enqueue it. When packets are deliv-
ered by the NE, syndrome information indicating whether any redundant copies of the
packet differed from the majority vote is attached to each packet. While retrieving a mes-
sage, some of this syndrome information is processed, and that accounts for the increased

execution time.

msg size| msg avg std dev max min time| # sam-
(bytes) size time (usec) time (Lsec) ples
(pasc;(et (usec) (1sec)

0 1 121 2 127 121 19
100 2 193 3 196 190 19
200 4 312 3 315 308 19
300 5 379 3 385 377 19
400 7 499 3 504 496 19
500 8 567 3 571 565 19
600 10 685 3 690 683 19
700 12 752 2 753 746 19
800 13 871 2 877 871 19
900 15 991 3 996 990 18
1000 16 1058 1 1059 1058 18

Table 22. Retrieve Message Execution Time as a Function of Message Size
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Figure 24 depicts a graphical representation of the data contained in Table 21 (Queue
Message) and Table 22 (Retrieve Message).

1200 -
- —wo— Retieve_Msg
S 1000
(]
2
E 800 - =t Queue_Msg
" 600+
3
2
3 400 1
[
[ L
»
w 200 -

0 Y T T 1

0 10 20
Number of Message Packets

Figure 24. Graphical Representation of Queue Message and Retrieve Message Execution
Time as a Function of Number of Packets

4493 n Wit ver,

The amount of time needed to context switch between two tasks was measured, and the re-
sults are summarized in Table 23. These measurements were collected by creating a system
configuration where two tasks in the same rate group were given consecutive priorities.
This ensured that one task would execute immediately prior to the second one. Software
probes were placed just before the iterative completion point of the first tasks and just after
the iterative completion point of the second task. The context switch time was determined
by subtracting the two timestamp values,.

avg | std dev max |min time| # sam-
time (usec) time (usec) ples
(usec) (usec)

19 2 24 18 26

Table 23. Context Switch Execution Time

4.4.10. Performance Data Summary

The overheads in this section were presented according to their occurrence during a minor
frame. However, the system overheads can be grouped according to their purpose. Using
this scheme, four major categories exist: communication overheads, scheduling overheads,
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IO overheads, and fault detection overheads. The tasks/procedures associated with each of
these four groups are listed below.

Communication Overheads

IH (scoop message)

RGD» (send_queue and update_queue)

Queue Message (called by application task)

Retrieve Message (called by application task)

Scheduling Overheads

RGD;

RGD3 (excluding send_qgueue and update_queue)

Context Switching
Inpu ut

10D

10SC

0P

Fault Detection
FDIR

For the system configuration used in this section, the communication overheads dominate
the total overhead. On average, the application task sends five packets per minor frame;
therefore, an average of six packets are processed per minor frame (including the one-
packet FDIR message). The OS communication overheads per minor frame include
scoop (763 psec), send_queue (637 usec), and update_gueue (162 psec). The
total communication overhead is 1562 pisec. The total OS overhead, excluding IO, is 2199
usec (average RGDj = 141 usec, average RGD7 = 1268 Usec, local FDIR = 84 psec).
Therefore, the three communication procedures account for 71.0% of the total overhead.
Note that the queue_message and retrieve_message overheads aren't counted in
the communication overhead. This is because they are system procedures which are called
by the application tasks. Therefore, the overhead for queueing and retrieving messages 1s
billed to the task's execution time.

The overheads associated with scheduling and fault detection are rather low compared with
those associated with communication. Scheduling activities take, on average, 553 psec per
minor frame, which is 25.1% of the total OS overhead. The local FDIR task takes just 84
usec per minor frame, or 3.8% of the total. Table 24 summarizes the percentage of over-
head (excluding IO) due to communication, scheduling and fault detection. for an average
minor frame. Note that the data in Table 24 represent values averaged over eight minor
frames; the overhead can vary widely from minor frame to minor frame.
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Overhead | Average | % of Total
Category Overhead| Overhead

(usec) (excluding

10)
Communication 1562 71.0 %
Scheduling 553 25.1%
Fault Detection 34 3.8 %

Table 24. OS Overhead Due to Communication, Scheduling and Fault Detection (Average
Values for a Minor Frame)

The significance of the 10 overhead is highly dependent on the amount and type of 1O per-
formed. The important contribution of this effort concerning IO performance measurement
is the development of a methodology which can be used to continuously evaluate 10 per-
formance as development progresses.

The overall AFTA OS overhead (excluding IO) is 2199 psec per minor frame, on average.
Thus, 22% of the 10 msec minor frame is consumed by operating system overhead. This
compares favorably to the Software Implemented Fault Tolerance (SIFT) computer which
requires 64.3% OS overhead [Pal85]. The primary source of SIFT overhead is due to
voting and data consistency functions. In AFTA, the voting and data consistency functions
are considered part of the communication overhead. Therefore, as with SIFT, voting and
data consistency functions can also be considered a primary source of overhead for AFTA.
However, AFTA uses the hardware-based Network Element to reduce the total overhead.

4.5. Detailed OS Overhead Model

One important use of the performance data presented in the previous section is its incorpo-
ration into a model which can estimate the operating system (OS) overhead under various
configurations and workloads. Using the empirical performance data summarized above,
this section presents a detailed description of the OS overhead model, illustrates the use of
the model with a given system configuration and workload, and compares predicted over-
heads to measured overheads.

4 th

This section gives a detailed description of the AFTA operating system overhead model,
based on the empirical performance data presented above. The overhead model will be de-
scribed according to the occurrence of each OS task in the minor frame (Figure 11).

The amount of overhead per minor frame is the sum of the execution times for each of the
following operating system tasks: interrupt handler (IH), rate group dispatcher (RGD), IO
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dispatcher (IOD), Fault Detection Identification and Recovery (FDIR), IO Source
Congruency Manager (I0OSC), and 10 processing (IOP). This overhead is represented by
the following equation:

OH =1H; + RGD; + IOD + IH7 + RGD3 + FDIR + I0SC + IOP

A detailed description of each of these eight overheads follows.

4.5.1.1. Interrupt Handler (IH;) Overhead
The overhead associated with the first interrupt handler (IHj) is given by the following

general equation:

IH] = (time to update clock) + (time to schedule next interrupt) +
(time to scoop messages)

Updating the clock and scheduling the next interrupt are executed in assembly language
routines and therefore could not be directly measured using the Ada-based software probes.
However, the TH overhead is overwhelmingly dominated by the time needed to scoop mes-
sages, so the time needed to update the clock and schedule the next interrupt is negligible
and will be ignored.

The time to scoop message packets is a function of the number of packets that arrived in

the processor's receive queue since the last time a scoop was executed. The data in Table 7
indicate that the relationship between the scoop time and the number of packets is linear.
As a result, the overhead associated with the interrupt handler can be given as below:

IH] = 110 * number_of packets + 103 (Lisec)

4.5.1.2. Rate Group Dispatcher - Part Qne (RGD;) Qverhead

The amount of time needed to execute the first part of the rate group dispatcher (RGD1) can
be summarized with the following general equation:

RGDj = (time to update congruent time) + (time to check for RGD; overrun) +
(time to check for task overruns) + (time to set up next RG interval) +
(time to schedule I0D)

With the exception of checking for task overruns, all the components of the rate group dis-
patcher (part one) are constant. Table 9 and Table 11 quantify this total constant overhead
as 69 usec. The time needed to check for task overruns varies with the number of tasks

that completed their iterative cycle during the previous minor frame. Table 10 shows that
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this overhead is approximately 10 psec per task. Therefore, the total overhead associated

with RGDj can be described by the following:
RGDj = 10 * number of suspended_tasks + 69 (Lsec)

4.5.1.3. IO Dispatcher (I0D) Qver
The general overhead associated with the IO dispatcher task is given below:
IOD = (time to increment frame counter) + (time to start IOR execution)+
(time to wait for 10 to complete) + (time to read input data)

As explained above, 10 performance measures were limited to outgoing IO data. This
makes it very difficult to explore the constituent IOD overheads in much detail. The time to
increment the frame counter is constant and is negligible (one ‘add’ statement in Ada). The
other constant is the time to wait for IO to complete. This is simply a busy-wait of a dura-
tion chosen by the application programmer to ensure that any outward-bound IO is finished
before any attempt is made to read incoming IO data. Though the wait is constant for a
given system configuration, it can vary widely depending on the application and type of 10
performed for the given configuration.

The two remaining constituents of the IOD overhead are variable and depend on the type
and amount of IO activity to be performed during a given minor frame. The time to start
the execution of 10 Requests depends on the number of 10 requests scheduled to run this
minor frame that have outgoing data, and it also depends on how much data each IO re-
quest is sending out. As stated above, the time needed to start IOR execution is approxi-
mately 5 psec per outgoing byte of 10 data. Finally, the time to read input data obviously
depends on the number of IO requests that have incoming data and on the amount of data
coming in. No performance measurements were taken using incoming 1O data.

4.5.14. Interrupt Handler (IH) Overhead

The overhead equation associated with the second interrupt handler (IH») is the same as
that given for IH; and is repeated below:

IH2 = 110 * number_of packets + 103 (usec)

Even though both instances of the interrupt handler are modeled by the same equation, in
general the overheads associated with IH] and IH? will be different. This is because the
time to scoop messages will vary with the number of packets present in the receive queue
for the processor. Typically, the time interval between the occurrence of IH] and IH? is
less than the time duration from IH2 to the next occurrence of IH]. This implies that more
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packets have had an opportunity to arrive in the receive queue during the interval from IH?2
to IH1, and therefore the time to scoop messages should generally be longer for IH] than
IH>.

4.5.1.5. Rate Group Dispatcher - Part Two (RGD3) Overhead

The execution time for the second part of the rate group dispatcher (RGD3) can be generally
described as follows:

RGD; = (time to update congruent time) + (time to check for RGD overrun) +
(time to check for IOD overrun) + (time to send queued messages) +
(time to update queues) + (time to schedule RG tasks) +
(time to increment frame count) + (time to set up 10 interval)

All but three of the RGD, constituents listed above have constant execution times. The
time to update the congruent time value, check for RGD1 and IOD overrun, increment
frame count, and set up 10 interval is constant and equals 49 psec. The three variable

constituents of RGD> are the time to send queued messages, the time to update queues, and
the time to schedule RG tasks.

The time to send queued messages is a function of the number of tasks that suspended
themselves during the previous minor frame and the number of message packets that each
task had enqueued since the last time its queue was sent. For each task, the time to send
the queued packets (Table 14) is given by:

Send_Queue (per task) = 115 * number_of packets - 31 (usec)

The time to update a task's queue is a function of the number of packets received and the
number of packets read since the last time the queue was updated. Table 15 yields the fol-
lowing equation:
Update Queue (per task) = 8 * number of packets + 19 (usec)

Since the time to send queued messages and update the message queues both vary with the
number of packets enqueued, they can be combined into the following single equation:

Send_and_Update_Queue (per task) = 123 * number_of packets - 12 (usec)
The time to schedule the rate group (RG) tasks is a function of the number of RG tasks that
are to be scheduled this minor frame. The data in Table 16 results in the following equa-
tion:

Schedule_Tasks (per rate group) = 26 * number of rg_tasks + 15 (usec)
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The three variable constituents of RGD2 can be represented by two equations. Including
the constant constituent, the general expression of the RGD7 overhead can now be ex-
pressed as:

RGD3j = (time to send and update queues) + (time to schedule tasks) + (a constant)

Using equations (1) and (2), the detailed equation for the total RGDj overhead is given by:

num_tsk num_rg_tsk
RGD2 =2 [(123 * num _pktj) - 12] +2 [(26 % num_rg_tskj) + 15] + 49 (usec)
i=l j=l

where,

num_tsk  is the number of tasks with messages to send that completed their it-
erative cycle during the previous minor frame.

num_pkt is the number of packets a task has enqueued since its last
send_queue call.

num_rg is the number of rate groups that begin a new frame boundary in the
current minor frame.

num_rg_tsk is the number of tasks in a given rate group.

It is interesting to note that the RGDj overhead is much more sensitive to the number of
packets to send than to the number of tasks to schedule. There is approximately five times
as much additional RGD; overhead for each additional message packet than that for each
additional task.

4516, FaultD jon Identificati Recovery (FDIR) Overhead

The overhead of running the Local FDIR task is the same as that for enqueueing a one-
packet message, which is all the Local FDIR task does.

FDIR = (time to enqueue message to System FDIR task)

The Local FDIR task has a constant execution time, as shown in Table 18. Therefore, the
overhead for FDIR can be expressed as:

FDIR = 84 (usec)

The overhead for different types of fault recovery strategies (e.g., degrade the system or
virtual group, bring up a hot spare) was not measured and is not included in the overhead
summary. These times must be eventually included into the analysis to allow the user to
estimate the performance overhead for handling faults.
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4.5.1.7. 10 Source Congruency Manager (I0SC) Qverhead
The IO Source Congruency Manager (I0OSC) ensures all members of a redundant Virtual

Group receive a copy of any input read by another member. The overhead associated with
the IOSC task is given below:

I0SC = (time to exchange input data among VG members)

The data for IOSC were collected using a simplex VG for 10. Therefore, the data repre-
sents a best case value since the IO data did not need to be exchanged among members of a
redundant VG. The minimal overhead for IOSC is given as:

10SC = 52 (usec)

4518 10 Pr jng T IOP) QOver,

The IO Processing (IOP) task is responsible for ensuring that all members of a VG per-
forming redundant IO end up with a single input value. This usually involves some data
smoothing or averaging. For instance, the average of three sensor values could be used as
the single input value. This processing or smoothing of the input data is specific to the
application, and can vary widely as far as execution time is concerned. The general IOP
overhead is given below:

IOP = (time to process input data)

The IOP task is not fully implemented, and the implementation will be strongly dependent
on the application. Therefore, the data for IOP execution time given in Table 20 represent
minimum execution times for IOP. Using these data, the minimal IOP overhead is:

IOP = 15 (usec)

4.5.19. Total verhead
The total OS overhead for a given minor frame, excluding IO, is given by:
OH =1H; + RGD| + IHy + RGD; + FDIR
where,
IH; = 110 * number_of_packets + 103
RGDj; = 10 * number_of_suspended_tasks + 69
I[H2 = 110 * number_of_packets + 103

num_tsk num_rg_tsk

RGDp =2 [(123 * num_pkt;) - 12] +2 [(26 * num_rg_tskj) + 15] + 49
i=1 j=1
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FDIR = 84

By combining both IH overheads into one and merging all constants, the overall OS over-
head (excluding IO overhead) for a given minor frame becormes:

OH = (110 * num_pkt_scooped) + (10 * num_tsk) +

num_tsk num_rg_tsk

2 [(123 * num_pkt;) - 12] +& [(26 * num_rg_tskj) + 15] + 305 (usec)

i=1 j=1

where,

num_pkt_scooped is the total number of packets scooped during the minor
frame.

num_tsk is the number of tasks with messages to send that completed
their iterative cycle during the previous minor frame.

num_pkt is the number of packets a task has enqueued since its last
send_queue call.

num_rg is the number of rate groups that begin a new frame boundary
in the current minor frame.

num_rg_tsk is the number of tasks in a given rate group.

4.5.2. Example of Overhead Model Use

To illustrate the use of the detailed OS overhead model presented above, an example system
configuration is created , the system parameters are used as input to the overhead model in
order to predict the OS overheads, and the predicted overheads are compared with empiri-
cally measured overheads. This section also illustrates several other ways to use the OS

overhead model.
452 1 Description of Example System Configuration

For our example, the AFTA is configured with three user application tasks. The first one is
an RG4 task that sends and retrieves a 3-packet message during each iteration. The second
application task is an RG3 task that sends and retrieves a 6-packet message during each it-
eration. The third application task is an RG1 task that sends and retrieves a 2-packet mes-
sage during each iteration. A listing of all schedulable tasks, sorted by rate group, is given
below:




RG4 tasks (six) RG3 tasks (two)

fdir (local) 1o_processing_task_rg3
system_fdir application_task _2 (user task)
io_source_congruency_mgr

io_processing_task_rg4 RG2 tasks (one)
10_application_task (user task) io_processing_task_rg2

application_task _1 (user task)
RG] tasks (two)
io_processing_task_rgl
application_task _3 (user task)

4522 Predi ver.

The OS overheads vary as function of several parameters. These parameters include the
total number of message packets scooped, the number of tasks that completed their iterative
cycle during the previous minor frame, the number of packets sent by each task during the
previous frame, the number of rate groups that reached a frame boundary during the previ-
ous minor frame, and the number of schedulable tasks for each of the rate groups which are
at a frame boundary. Based on the system configuration given above, the values for each
of these parameters during each minor frame are given in Table 25.
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minor num num | num pkts [ num RG num
frame pkts task per task |at frame| tasks per
number |scooped| compl bound- RG
ary
0 12 11 3 (appl_1),| RG4, 6 (RG4),
6 (appl_2),| RG3, 2 (RG3),
2(appl_3), | RG2, 1 (RG2),
1 (fdir) RGl1 2 RG1)
1 4 6 3 (appl_1),] RG4 6 (RG4)
1 (fdir)
2 10 8 3 (appl_1),] RG4, 6 (RG4),
6 (appl_2),| RG3 2 (RG3)
1 (fdir)
3 4 6 3 (appl_1), RG4 6 (RG4)
1 (fdir)
4 10 9 3 (appl_1),| RG4, 6 (RG4),
6 (appl_2),| RG3, 2 (RG3),
1 (fdir) RG2 1 (RG2)
5 4 6 3 (appl_1), RG4 6 (RG4)
1 (fdir)
6 10 8 3 (appL_1),| RG4, 6 (RG4),
6 (appl_2),| RG3 2 RG3)
1 (fdir)
7 7] 6 3Gppl1),| RG4 | 6 (RGA)
1 (fdir)

Using the parameter values given in Table 25 and the OS overhead equations, the OS over-
head for each minor frame can be predicted. These predictions are presented below:

Frame 0

I[H; = (110 * 12) + 103 = 1423 usec
RGDj = (10 *11) + 69 = 179 psec
RGD2 =[(123 *3) - 12] + [(123 * 6) - 12] + [(123 *2) - 12] + [(123 * 1) - 12] +

[(26 * 6) +15] + [(26* 2) + 15] + [(26 * 1) +15] + [(26 * 2) + 15] + 49
= 1823 usec

FDIR = 84 psec

TOTAL = 3509 psec (35.1% of minor frame)

Frames 1. 3. 5. and 7
IH; = (110 * 4) + 103 = 543 usec
RGDj =(10*6) + 69 = 129 usec

Table 25. System Parameters for Each Minor Frame
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RGD2 = [(123 * 3) - 12] + [(123 * 1) - 12] + [(26 * 6) + 15] + 49 = 688 usec
FDIR = 84 psec

TOTAL = 1444 usec (14.4% of each minor frame)

Frames 2 and 6

IH; = (110 * 10) + 103 = 1203 psec

RGDj = (10 * 8) + 69 = 149 psec

RGD2 =[(123 *3) - 12] + [(123 * 6) - 12] + [(123 * 1) - 12] +
[(26 * 6) + 15] + [(26 * 2) + 15] + 49 = 1481 psec

FDIR = 84 psec

TOTAL = 2917 usec (29.2% of each minor frame)

Frame 4

IH; = (110 * 10) + 103 = 1203 psec

RGDj = (10 * 9) + 69 = 159 psec

RGD2=[(123 * 3)- 12] + [(123 * 6) - 12] + [(123 * 1) - 12] +
[(26 * 6) + 15] + [(26 * 2) + 151+ [(26 * 1) + 15] + 49 = 1522 usec

FDIR = 84 psec

TOTAL = 2995 usec (30.0% of minor frame)

Note that IO overheads are not considered in this example. Also, all the overhead for
scooping messages is assumed to occur in IH1. This is because the system was config-
ured using only a single VG. Since all messages are sent from and received by the same
VG, all message packets will be scooped at the beginning of each minor frame, during IHj.

452 T, Predict A ver

To determine the accuracy of the OS overhead model, empirical performance data were
collected using the system configuration described above. A comparison of the overheads
predicted by the model and the observed overheads is given in Table 26. Note that the
overheads are the average values for a minor frame; individual overheads varied from mi-
nor frame to minor frame.
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over- | predicted | measured
head time time difference
(usec) (usec)

1H; 901 870 +35%
RGD; 144 144 0.0 %
RGD> 1132 1364 -17.0 %
FDIR 84 84 0.0 %
TOTAL 2264 2462 -8.0%

Table 26. Comparison of Predicted and Measured Overheads
(Average Values for a Minor Frame)

Table 26 shows that the overhead model is accurate for the IH;, RGD1, and FDIR over-
heads. However, the predicted RGD overhead is 17.0% less than the observed overhead.
The RGD error caused the total predicted overhead to be 8% less than the total measured
overhead (excluding 10).

There are several causes for the inaccuracy of the RGDy model. The primary cause is the
model does not account for the time consumed by send_gueue and update_gueue
when a task has no message packets to send. The overhead of making the send_queue
call for tasks with no message packets is 5 psec per task (Table 14). The corresponding
overhead for update_queue is 16 psec per task (Table 15). Therefore, 21 pisec is spent
for each task that doesn't have any message packets to send. If a O is inserted into
Equation 1 for the number of packets, the equation results in a -12 psec overhead to
send_and_update for each task, instead of the correct 21 pysec value. Equation 1 is a least
squares line approximation to the data contained in Table 14 and Table 15. The approxi-
mation is very accurate except for the case when the number of packets equals zero. The
model currently only considers send_and_update overheads for tasks that have message
packets to send. To be more accurate, it should account for the overhead for tasks that
have no packets.

To see the effect of this on the RGD7 overhead, consider minor frame 1. The model pre-
dicts an RGD3 overhead of 640 psec, versus the observed overhead of 804 psec (25.6%

error). If the send_and_update overhead for the four tasks in that minor frame which had
no messages is included, the predicted RGD» overhead becomes 724 psec, and the RGD

error is reduced to 10.0%. This reduction in the RGD error can be achieved by using the
following modified send_and_update queue equation:
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Send_and_Update_Queue (per task)
= 123 * number of packets - 12 (usec), if task has message packets in queue
= 21 (usec), if task has no enqueued message packets

Another cause for the RGD7 overhead error is the inaccuracy of the least square line used to
predict the time to schedule RG tasks. The time predicted by this equation can be as much
as 22% in error. For better accuracy, the time to schedule RG tasks should be determined
by a second- or third-order polynomial, instead of a linear approximation. Figure 25 is a
graphical comparison of the measured overhead associated with scheduling tasks with the
least square line approximation of that data.
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Figure 25. Comparison of Time to Schedule Tasks (Measured) with Least Square Line
Approximation

The RGD2 overhead is much more susceptible to inaccuracies in the model than the other
overheads because the RGD; code contains several nested loops that can cause small errors
to quickly multiply into significant ones. For example, send_queue and up-
date_queue are called once each for every task that completed its iterative cycle during
the previous minor frame. For the configuration given in this section, send_queue and
update_queue are called 11 times each during minor frame 0. Any error in the pre-
dicted overheads for send_gueue and update_qgueue will be multiplied by 11; thus, a
small error may quickly become a significant one.

4.524. Qther Uses of OS Overhead Model

In addition to its use in predicting overhead for a given system configuration, the OS over-
head model can also be used to predict bounds on OS performance. For example, the
model can be used to determine the minimum amount of OS overhead. A minimal configu-
ration would consist of the following system tasks: Local FDIR (RG4), IOSC (RG4), IOP
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(RG4), IOP (RG3), IOP (RG2), IOP (RG1). One RGI application task which did not
send any messages would also be present. The OS overhead model predicts the average
total OS overhead per minor frame (excluding IO) for this minimum configuration to be
698 psec (7% of minor frame).

Another example of using the OS overhead model is to determine the amount of message
traffic which saturates the system, resulting in an OS overhead of 100%. Using the system
configuration described above, the overhead model predicts that the total OS overhead will
exceed 100% for minor frame 0 when each of the three application tasks sends 19 message
packets apiece during each RG frame.

Similarly, the model can be used to predict the number of tasks which will saturate the
system. Consider the system configuration described above with each application task
sending one message packet per RG frame. According to the overhead model, an addi-
tional 59 RG4 tasks (each task sends one message packet per frame) can be added to the
systemn before the total OS overhead exceeds 100% of a minor frame.
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S. POSIX Study

5.1. Objective and Approach

The overall objective of this task was to extend AFTA’s open system characteristics to in-
clude its operating system and software. To achieve this objective, the AFTA Network
Element was interfaced to a standard operating system, which was then hosted on a
quadruply redundant AFTA. A POSIX-compliant operating system was selected for this
demonstration. The utility of the resulting system was demonstrated by rehosting and exe-
cuting an Army flight-critical application (Dynapath Terrain-Following / Terrain Avoidance)
on the AFTA.

5.2. Overview of Progress

Several POSIX-compliant kernels were evaluated via vendor presentations and literature
surveys. These kemnels included LynxOS, Quantum QNX, RTMX Uniflex, and HP-RT.
Because it is currently a market leader and compatible with the 68030 processors currently
in use in the AFTA, LynxOS was selected for detailed evaluation and demonstration.
LynxOS was purchased and installed on a nonredundant simplex MVME147 68030-based
workstation. (Because of the extremely rapid pace at which new processors and kernels are
being introduced, this decision should be re-evaluated at appropriate intervals.)

The AFTA NE was installed into the simplex LynxOS environment and tested via the self-
test code developed under the earlier AFTA detailed design phase. LynxOS / UNIX-com-
patible device drivers were written to allow application programs to access the NE, and a
simple Application Programmer Interface was implemented to allow application programs
to perform interchannel exchanges and synchronization. “Dynapath,” a terrain-following /
terrain-avoidance helicopter trajectory generation application developed by NASA Ames,
was acquired from the Army and demonstrated in real-time on this nonredundant worksta-
tion environment, with interchannel exchanges being performed by the AFTA NE. The NE
was operated in “fiber optic loopback mode,” in which the single NE’s optical output was
connected to its inputs to simulate being connected to four other FCRs.

Subsequently, LynxOS was installed in the quadruply redundant target environment of the
AFTA. This environment consists of four FCRs, each containing one NE and one or more
68030 PEs. The NE interface device drivers and Dynapath were ported to this environment
and demonstrated. Limited fault injections (e.g., channel resets) were performed to
demonstrate fault tolerant behavior.
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Figure 26. Generic Layered View of AFTA

5.3. Generic AFTA Virtual Architecture

A generic layered view of the AFTA is shown in Figure 26. Multiple COTS Processing
Elements (PEs) are formed into synchronous Virtual Groups having redundancy of one,
three, or four. Figure 26 shows a quadruplex and triplex VG. Each VG executes different
application software and accesses the fault tolerant-related services, if desired, via an
Application Programmer Interface (API). The API and application tasks reside within the
context of a COTS operating system. Fault Detection, Identification, and Recovery task
also resides in the OS as a separate task, and detects and identifies faulty components and
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performs recovery actions appropriate to the application and mission phase. The API inter-
acts with the application software on the one hand and the NE interface software on the
other hand, to provide the Byzantine Resilient Virtual Circuit Abstraction for the application
software.

5.4. POSIX Study Virtual Architecture

The generic abstract architecture above was instantiated as shown in Figure 27 for the
POSIX study. The Dynapath application program invokes the “exch()” primitive to perform
source congruency and voting on input and output data, respectively. The exch() primitive
also synchronizes the multiple redundant copies of Dynapath. The exch() primitive accesses
the NE via a UNIX device driver. FDIR was not implemented for this demonstration.

Virtual Group

Network
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Byzantine ] g

To / From Other VGs ~immmmmii-§ & 0 it £

Virtual

Circuit)

Figure 27. Layered View of AFTA for POSIX Study

5.5. POSIX Study Physical Architecture

In the physical architecture, the host workstation executes the LynxOS “self-hosted” op-
erating system and development environment. This environment contains the editors,
compilers, linkers, file systems, and download facilities required for code development.
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The Network Element was installed into this environment for preliminary development and
testing (Figure 28), but was subsequently removed to the target environment.

Ethernet
SCSI Disk/Tape MVMEI47
AFTA
Network g
Console Element Fiber
Optic
Inter-FCR
Links
VMEbus
Figure 28. Simplex Self-Hosted Development Environment
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Figure 29. Simplex Target Environment and Development Environment
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In the next step of the development, a target LynxOS was obtained and ported to a target
environment which did not contain a disk or tape. The Network Element was moved to this
environment to comprise a complete single FCR of an AFTA (Figure 29). All NE interface
code was then ported to this environment. All communication (downloading, file services,
etc.) among the development environment, target environment, and other computers in the

laboratory occurs over Ethernet.

At this stage of the development it was noticed that there was very little difference in opera-
tion between the self-hosted and target LynxOS environments. Application and system
code which was developed on the self-hosted workstation environment in general executes

without modification on the target environment.
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Figure 30. Redundant Target Environment and Development Environment

Subsequently, the LynxOS target operating system, the NE interface code, and the applica-
tion code were ported to all four processors in the quadruply redundant AFTA (Figure 30).

VMEbus
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5.6. POSIX Study Scheduling

Under the POSIX study the rate group task scheduling model developed under previous
AFTA tasks was extended to remove certain limitations. The task taxonomy used in the
context of this study partitions tasks according to their trigger mechanism and execution
time. Tasks may be either “time triggered” or “event triggered.” Time triggered tasks may
be either periodically triggered (e.g., every hour) or sporadically triggered (e.g., at five o’-
clock today). Event triggered tasks may be triggered by externally-occurring events (e.g.,
the operator pushes a button), or internally triggered (e.g., a buffer condition reaches a
given state, a prior iteration of the task has completed). Moreover, regardless of how they
are triggered, tasks may have constant (or bounded) or variable (or unbounded) execution
times. The matrix of possibilities is shown in Figure 31.

Execution
Time

Constant Variable

(bounded) |(unbounded)
. Periodic H, S S

Time g—df————-———
Trigger poradic H, S S

Mechanism

External H, S S

Event - - - pPbrb--——F—— -
Internal H, S S

H = Hard Real Time
S = Soft or Non-Real Time

Figure 31. Task Taxonomy

5.6.1. Periodic Hard Real-Time Tasks

Time-triggered periodic hard real-time tasks are specified by the ordered pair <period, off-
set>. Task period can be an arbitrary number of minor frames. Obviously, the execution
time of the task must be less than its period. A task can be scheduled to start at an arbitrary
start frame offset, as measured from a given baseline frame. Periodic hard real-time tasks
are scheduled according to rate monotonic theory. This model should be compared to
AFTA Ada RTS rate group scheduling model described in Section 4 of this document
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Figure 32 shows three such tasks. Task 1 starts on frame 0 and has a period of 1 frame,
Task 2 starts on frame 1 with period 2, and Task 3 starts on frame 0 with period 5.

Figure 32. Scheduling of Hard Real-Time Periodic Tasks

.6.2. Event-Trigger Real-Time Task:

An event-triggered hard real-time task is specified by the same parameters as periodic tasks,
except that the start frame offset now refers to how many frames after an event’s occur-
rence the task must be started. Note that an explicit decision is required at system pro-
gramming time as to which task(s) event-triggered task(s) may preempt. Once enabled,
scheduling of an event-triggered hard real-time task is mechanized via its priority within
rate monotonic priority class corresponding to the period of the task.

Figure 33 shows event-triggered Task 4 which has a maximum execution time of 1 period,
and an offset of O after the frame in which the event occurs.
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Figure 33. Scheduling of Event-Triggered Hard Real-Time Tasks

5.6.3. Time- or Event-Triggered Soft Real-Time Tasks

Time- or event-triggered soft real-time tasks are specified by the maximum skew which can
build up between nonfaulty redundant copies of the task between “synchronization points.”
Soft real-time tasks may be arbitrarily scheduled by the underlying operating system ac-
cording to a totally arbitrary (e.g., round-robin or self-suspension) policy, so long as they
may be preempted by hard real-time tasks. A synchronization point may be a request to per-
form source congruency on data, vote data, wait for a specified time interval, wait until a
given time, or other any other “synchronizing act” as needed by the application.

When the redundant copies of a soft real-time task arrive at a synchronization point, they
invoke the AFTA NE device driver which registers their request to perform the synchro-
nization act. This invocation blocks the caller until the synchronization act request has been
approved and executed by the AFTA NE device driver. At timer interrupts, the AFTA NE
device driver interrupt service routine (ISR) exchanges the synchronization act request pat-
terns of all soft real-time tasks and determines which may be approved and executed. A re-
dundant task’s synchronization act is approved and executed by the ISR if all copies of the
task have requested the exchange, or a majority of tasks have requested the act and the
maximum task skew has expired. After the synchronization act has been executed by the
device driver, the caller is unblocked and may continue execution. Note that when the caller
is unblocked, the redundant copies of the caller are synchronized. Each task may have a
different skew, which it may change at any time using calls to the AFTA NE device driver.
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Figure 34 shows soft real-time Task 5, which occasionally requests synchronizing acts
which are approved on scheduling frame boundaries by the AFTA NE device driver. Note

the variation in task period and skew which this approach accommodates.

Aperiodic task termination / exchange request pattern
sampled, voted, and approved on scheduling frame
boundaries

Scheduling
Frames

Task 5, Copy A

Task 5, Copy B

Task 5, Copy C

skew

Figure 34. Scheduling of Aperiodic Tasks

§.7. Network Element Device Driver

A UNIX-compatible device driver interface was implemented under LynxOS to allow ap-
plications to interface with the Network Element. This device driver supports the UNIX in-
stall(), open(), write(), read(), ioctl(), close(), and uninstall() calls.

1 vi iv
The NE is opened and closed using standard open() and close() calls. Once the device has

been opened using the open() call, interactions with the NE are accomplished using the
ioctl() call. NE-related functions which can be performed using this call are:

NE_ISYNC. This operation performs initial synchronization of the
Network Elements. It is only necessary to perform this operation once after
bootstrapping the AFTA. Repeated invocations of the NE_ISYNC function
have no effect.

TIMER_PERIOD. This operation sets the period (in microseconds) of the
timer-driven interrupt service routine (ISR) which exchanges the synchro-
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nization act request pattern of all tasks, performs unanimity and majority
plus timeout calculation on these patterns, performs all enabled exchanges,
and unblocks tasks which are awaiting completion of a synchronization act.

TIMER_SET. This operation enables the timer interrupt, which, every
TIMER_PERIOD microseconds thereafter, causes the NE device driver ISR
to be executed.

TIMER_RESET. This operation disables the timer interrupt.

NE_EXCH_TIMELIMIT. This operation allows the application program-
mer to set the amount of time that the NE_EXCHANGE operation will wait
before declaring a timeout on a tardy exchange request and, consequently,

enabling the exchange.

NE_EXCHANGE. This operation requests a one-round (vote) or two-
round (source congruency) exchange of data. The exchange is performed by
the NE device driver ISR only if all of the copies of the caller have re-
quested the exchange, or a majority of the callers have requested the ex-
change and at least NE_EXCH_TIMELIMIT microseconds have expired.
The caller is blocked until the exchange has been completed.

Additional NE-related functions, such as changing the Configuration Table and performing
inline exchanges without waiting for the ISR, will be added to this driver as needed by up-
coming applications.

5.7.2. Device Driver Installation

The Network Element memory map is defined in Volume 4 of the AFTA Conceptual
Study. For the LynxOS integration, the NE was located in standard VMEbus address space
at location 10000000 (hex). The device driver was installed using the following script prior
to execution of Dynapath.

drinstall -c¢ NE_driver

mknod /dev/ne ¢ 8 0

devingtall -c¢ -4 9 NEinfo

Figure 35. AFTA NE Device Driver Installation Script
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5.8. Dynapath Demonstration Architecture

This section describes the architecture and operation of the Dynapath demonstration which
was hosted on the quadruply redundant environment described above.

Dynapath is an algorithm for generating a low-altitude helicopter trajectory through rugged
terrain. It uses digital map data, the current vehicle state (e.g., position, velocity), vehicle
dynamical constraints (e.g., maximum rate-of-bank), a set of waypoints over which the
vehicle must fly, desired trajectory constraints (e.g., setpoint altitude), and other informa-
tion to construct a trajectory which meets all these constraints and requirements. The gen-
erated trajectory is then presented to the pilot on a head-up-display (HUD) in a simple-to-
use “highway-in-the-sky” format, which the pilot may follow. The Dynapath functionality
is likely to be safety-critical, especially in low-visibility conditions.

Figure 36 shows the major components of the demonstration. At the left of the figure,
Dynapath resides on the quadruply redundant AFTA, along with LynxOS and the Network
interface software described elsewhere in this report. Dynapath communicates with vehicle
dynamical simulation software (Helsim) and the HUD symbology generation software
running on a Silicon Graphics (SG) workstation using Ethernet-based TCP/IP. The out-of-
window view of the terrain, the Dynapath-generated highway-in-the-sky symbology, and
other HUD symbology are presented on a high-resolution graphics monitor connected to
the SG.

Periodically, Dynapath transmits a request for vehicle state from the helicopter simulation.
When it receives a state update from the simulation, Dynapath calculates a new commanded
trajectory segment and transmits the new trajectory segment description to the symbology
generation software. The “pilot” views the terrain and Dynapath symbology and provides
cyclic and collective commands to the helicopter simulation via a mouse and joystick as she
attempts to follow the commanded trajectory.
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Figure 36. Architecture of Dynapath Demonstration

.8.1. Dynapath Application Programmer Interface to NE

Dynapath 1s scheduled on the AFTA as an aperiodic soft real-time application task. The de-
tails of the scheduling are of no consequence. While four copies of Dynapath run on the re-
dundant AFTA, only one processor (say, processor A) is connected over Ethernet to the
SG. Therefore Dynapath must invoke NE exchange primitives on the following occasions:

1. Processor A polls its Ethernet input buffers and provides all channels
with consistent copies of the polling result.

2. Processor A reads its Ethernet input buffers and provides all channels
with consistent copies of the input data.

3. All processors have completed computation of a trajectory segment and
must vote the result before Processor A transmits it to the SG over Ethernet.

Dynapath uses the blocking “exch()” call to perform these operations. The exch() call is
built on the AFTA NE device driver NE_EXCHANGE ioctl, which blocks Dynapath until
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all copies of Dynapath have requested the exchange, or a majority of the copies have re-
quested the exchange and a user-defined timeout has expired. At this point, the exchange is
said to be “enabled.” The exchange can be either a request for a vote or a request to dis-
tribute single-source data, such as that obtained from the helicopter simulation, to all mem-
bers of the Virtual Group. When the exchange is enabled, the AFTA NE device driver ISR
performs the requested exchange, delivers the exchanged data into the buffer by the caller
of the ioctl, and unblocks the caller.

The contents of the exch() call are shown in Figure 37. The call is invoked by the applica-
tion programmer with four arguments. The pointer “raw’” points to the source of the data to
be exchanged, “voted” points to the destination of the data to be exchanged, “class” indi-
cates the class of the exchange (i.e., single-source or voted), and “‘size” indicates the size
(in bytes) of the data to be exchanged. The current implementation of the
NE_EXCHANGE ioctl clobbers the data pointed to by raw.

The exch() call stores this data into a structure which is shared between the application pro-
gram and the Network Element Device Driver, sets the exchange request flag
(dyna_exch.sync_flag), and waits on the successful completion of the ioctl(), indicating
that the exchange has been completed. At this point, control is returned to the application
task, which can access the exchanged data.

void exch(char *raw, char *voted, int class, int size)
{
dyna_exch.raw_data = raw;
dyna_exch.voted_data = voted;
dyna_exch.class = class;
dyna_exch.size = size;
dyna_exch.sync_£flag = TRUE;
/* block here until exchange complete */
if( ioctl(NE_fd, NE_EXCHANGE, &dyna_exch) < 0)
{
perror ( "NE_EXCHANGE") ;
exit(-2);
}

/* exchange complete */
Figure 37. Listing of exch() Procedure

5.8.2. Dynapath Code for Interfacing with NE Device Driver

This section contains the file “dutils.c” which contains definitions of Dynapath’s interface
to the Network Element. The file also demonstrates how to open the NE device driver, vary
the exchange timeout for the Dynapath task, initially synchronize the NEs (which also sets
up the timer-based interrupt service routine which synchronously services the NE exchange
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requests)T, and close the NE. The exch() call code is repeated here, which in this case in-
cludes code which reduces the exchange timeout for the Dynapath task. The NE-specific
calls are printed in boldface and enclosed in boxes.

Note that Dynapath uses two task skew timeouts. Initially the timeout is large since the
multiple copies of Dynapath build up a huge skew as they contend for and read the way-
point file from the single copy of the waypoint file, which is NFS-mounted on the LynxOS
server. However, after the file is read and iterative execution of the task begins, no further
file accesses are needed so Dynapath can tighten up the skew. Also note that an application
task can modulate its skew as it executes and enters and leaves skew-inducing phases such
as file reads and writes. For example, if Dynapath were to enter a phase in which it reads or
writes a large shared file or performs a lengthy Ethernet transmission, it could temporarily

increase its maximum skew parameter.

T These functions would normally not be done by an application task. In this demonstration
they were implemented in Dynapath for simplicity.
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|#include “NE driver.h"

#include <stdio.h>
#include <smem.h>
#include <sem.h>
#include <pthread.h>
#include <lock.h>
#include <file.h>
#include "playback.h"

/* NOTICE */
/* */
/* This NASA computer program has been released soley for one of */
/* the purposes set forth in NASA Management Intruction 2210.2B */
/* and further dissemination of the program is prohibited. */
/* */
char dmain[] = "@(#)dutils.c 1.4 12/31/91*;
void *attach_map();
extern void dynapath();
int NE_fQ4;
int waypointread,timeocutlowered;
main(int argc, char *argv([])
{
int *ptr;
int loadid;
char set[5};
int dyna_status;
/* presence vector and generic “integer value” */
int pvect,ival;
int sbsock;
waypointread = FALSE;
timeocutlowered = FALSE;
/* This code opens the NE device driver */
if((NE_fd = open("/dev/NE", O_RDWR)) < 0)
{
perror("open NE");
pthread_exit (-1):
}
printf ("opened NE \n"):
/* Set NE device Adriver timer interrupt period */
ival = 40000; /* 40ms period */
if (ioctl(NE_£f4d, TIMER_PERIOD, &ival) < 0)
{
perror("setting timer period");
exit(-1);
}
/* Reset the timer and disable timer interrupt */
if (ioctl(NE_fd, TIMER_RESET) < 0)
{
perror ("resetting timer");
exit(-1);
}
/* Set up a 30 sec task timeout for high-skew execution */
ival = 30000000; /* 30 sec task timeocut */

if (ioctl(NE_£d4, NE_EXCH_TIMELIMIT, &ival) < 0)

{
perror("setting exchange time 1limit");

exit(-1);
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}
/* This code causes all channels to wait for a
synchronous #“go” command from the user interface. */

socksync () ;/**/

/* This code causes the NEs to become synchronized */
/* It also starts the timer and enables timer rupt */
if (ioctl(NE_fd, NE_ISYNC, &pvect) < 0)

{
perror ("isync");
exit(-1);
}
printf ("ISYNC complete\n");
ETHinit () ;
/* Setup for Avrada */
ptr = {(int *) init(argc, argv);

switch(arge) {

case 0:
pb.save_flag
pb.playback_flag
break;

iton
o O

case 1:
pb.save_flag
pb.playback_flag
break;

atoi(argv(0]);
0;

case 2:
pb.save_flag
pb.playback_flag
break;

)

atoi(argv([0]);
atoi(argv(1l]);

strcpy (pb.save_file_name, "pbd");
sprintf (set, "%d", pb.save_flag );
strcat (pb.save_file_name, set);
strcat (pb.save_file_name, “.dat");

strcpy (pb.playback_file_name, "pbd*) ;

sprintf (set, "%d", pb.playback_flag );

strcat (pb.playback_file_name, set);

strcat (pb.playback_file_name,”.dat");

dynapath() ; /* Execute Dynapath */

printf("dynapath task terminated with status %d\n",dyna_status);

/* All done. Close the NE device driver. */
close (NE _fd);

}

/* This is the body of the exch() routine as used in
Dynapath demonstration. */
void exch(char *raw, char *voted, int class, int size)
{
struct exch_struct dyna_ exch;
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int ival;

dyna_exch.raw_data = raw;
dyna_exch.voted_data = voted;
dyna_exch.class = clasgs;
dyna_exch.size = size;
dyna_exch.sync_flag = TRUE;
/* Perform the exchange */
if( dioctl(NE_fd, NE_EXCHANGE, &dyna_exch) < 0)
{
perror ("NE_EXCHANGE") ;
exit(-2);
}
/* Exchange done...redundant copies synchronized. */
/t
The current ioctl exchanges data in place,
from raw to raw.
The application expects the voted data to be in voted.
Therefore must bcopy from raw to voted.
Note that raw is !clobbered! by the ioctl.
*/
becopy (raw,voted,size);
/* This code reduces the timeout if the skew-inducing way-
point file read has been completed. */
if (waypointread && !timeoutlowered)
{
ival = 100000; /* 100 milli-seconds task timeout */
if (loctl(NE_fd, NE_EXCH_TIMELIMIT, &ival) < 0)
{
perror("setting exchange time limit");
exit(-1);
}
timeoutlowered = TRUE;

Figure 38. Dynapath’s dutils.c NE Interface Code

5.8.3. Use of NE Interface by Dynapath’s Ethernet Communications Procedures

This section illustrates the use of the NE exch() primitive by Dynapath’s Ethernet
Communications Procedures resident in the file “comm.c.” Two uses of the exch() primi-
tive are demonstrated. The first is in the routine “get_helsim_data,” in which a single-
source exchange (CLASS2A) is used first to exchange the status of the incoming Ethernet
buffer (i.e., whether data are present), and second, to exchange the actual data if present.
The second use of exch() is in the “send_hud” routine, where the Dynapath output data em-
anating from the redundant Dynapath executions are voted prior to being sent to the SG

“workstation.

The NE-specific calls are printed in boldface and enclosed in boxes.
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/**********************************************************************/

/* Code to be linked with Andre's code on the VME in order to */
/* communicate with the Silicon Graphics machine displaying the HUD */
/* and the PC displaying the map. */
/* This module contains integer functions ETHinit, send_hud, */
/* send_map, get_data_rec, and ETHclose. */
/**********************************************************************/
#include "ethernet.h" /* file containing AVRADA's ethernet addresses
*/

#include "common.h"
#include "heldata.h"

|#include "ne_drvr.h"

#include <stdio.h> /* Standard C I/O include file */
#include <fcntl.h> /* File constants for opening TCP ports */
#include <errno.h> /* System Error numbers and constants */

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>

char comm_c(] = “@(#)M% 1.1 10/28/91";

#define FALSE 0

#define ETH_PORT 1510

#define HEL_ETH 1500

/*********************************************************************'k/

/*LOCAL DATA */

/**********************************************************************/

int send_sock = -1; /* The Send socket */

int recv_sock = -1; /* The Receive socket */

int hel_sock = -1; /* receive socket for ethernet */

int size; /* Size of ethernet address structure */

static struct sockaddr_in src, /* The source address */
dst; /* The destination address */

static struct sockaddr_in hel; /* helsim address */

static unsigned long host_address; /* Network address of this ma-

chine */

static unsigned long broadcast_address; /* Network broadcast ad-

dress */
/**********************************************************************/
/* ETHinit Initializes ethernet send end recieve ports. */
/* Returned Value: 0 if successful, -1 if not */
/**********************************************************************/
int ETHinit ()
{
int tcp_error, /* Error number for opening TCP port */

fd; /* Temporary file descriptor */
fd = socket (AF_INET, SOCK_DGR2aM, 0) ;
tcp_error = errno;
close(fd);
1f(!tcp_error!| ltcp_error==EACCES) {

return(tecp_init () ) ;

}
else {

return(-1};

}
}

/***********************************************************************

*/
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/* Function to get data from helsim */
/***********************************************************************
*/
int get_helsim_data(struct heldata *msg)
{
int rval=0;
static int r_msize = -1;
static int msize = -1;
static struct heldata r_msg;
int dcount = 0;
do {
rval = recvfrom(hel_sock, (char *) (&r_msg),sizeof (struct heldata),
0, (struct sockaddr *)&hel,&size);
if(rval > 0)
{
dcount++;
r_ msize = rval;
}
} while{(rval>0)&&(ntohl(hel.sin_addr.s_addr)==zhost_address));

/* Exchange status and, conditionally, data for incoming
Ethernet socket used by Channel A */
exch(&r_msize, &msize, CLASS2A, s8izeof(r_msize));
if (msize > 0)
{
exch(&r_msg, msg, CLASS2A, s8izeof(struct heldata));
}

if (dcount > 0)
printf (“got %d pkts\n",dcount);

return(msize);
}
int send_hud(struct dynapath_output *msg)
{
/* dst.sin_addr.s_addr = APOLLO; /* */
/* dst.sin_addr.s_addr = MAXWELL; /* */
dst.sin_addr.s_addr = ONYX; /* */

/* Vote outgoing data before sending to helsgim. */
exch(msg,msg,cnhssl,sizeof(struct dynapath output));

return(sendto(send_sock,msg, sizeof (struct dynapath_output), 0, (struct
sockaddr *)&dst,sizeof(dst)) };
}
/*******************************************************************/
/* ETHclose Close the socket descriptors. */
/* Returned Value: 0 */
/*******************************************************************/
ETHclose()
{
close (send_sock) ;
close(recv_sock);
send_sock -1;
recv_sock -1;
return(0) ;

)

/***************************************************************/

/*< tcp_get_addrs Get the host and broadcast addresses >*/
/* */
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/* host_addr 0 The address of this machine. */

/*
/*

*/
Returned Value: 0 if successful; (-1) otherwise. *x/

/***************************************************************/

int

tcp_get_addrs( host_addr )
unsigned long *host_addr;

int s; /* Socket descriptor */
struct ifreq *ifp; /* Pointer to interface info */
/************************/

/* Get the host address */

/************************/

{

char host_name[32];

struct hostent *h;

if (gethostname( host_name, sizeof( host_name ) ) < 0) {

perror{ "Getting host name* );

return{ -1 );

)

if (!(h = gethostbyname( host_name ))) {

perror( “Getting host by name" );

return( -1 );

}

*host_addr = ntohl( *(u_long *) h->h_addr );

}

return( 0 );
}
/****************************'k*****************************************/
/* tcp_init Initialize a communication sockets. *x/
/* */
/* Returned Value: 0 if the socket is created without error; */
/* -1 otherwise. */
/**********************************************************************/
int tep_init ()
{
int bsize;
int opt; /* Value of socket options */

/********************************************************/

/* Check to see if initialization has already been done */
/******************************'k*************************/
if ((send_sock != -1) || (recv_sock != -1))

return( 0 );
/*******************************************************************/

/* Determine host and broadcast addresses */
/*******************************************************************/
if (tcp_get_addrs( &host_address ) < 0)

return( -1 );
/*******************************************************************/

/* Open Send socket */
/*******************************************************************/
if ((send_sock = socket( AF_INET, SOCK_DGRaM, 0)) < 0) {

perror( "Opening Send socket" );

return( -1 });

)

/*******************************************************************/

/* Enable broadcasting on Send socket */
/*******************************************************************/
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#ifdef SO_BROADCAST
printf ("SO_BROADCAST DEFINED\n");
opt = 1;
if ( setsockopt( send_sock, SOL_SOCKET, SO_BROADCAST,
&opt, sizecf(opt) ) < 0 ) {
perror( "Setting Send socket options" );
return( -1 );
}
#endif

/*******************************************************************/

/* Set up destination address to send to */
/******-k************************************************************/

dst.sin_family = AF_INET;
dst.sin_addr.s_addr = htonl( broadcast_address );
dst.sin_port = HEL_ETH; /*ETH_PORT; */

/*******************************************************************/

/* Receive socket */
/*******************************************************************/

if ((recv_sock = socket( AF_INET, SOCK_DGRAM, 0 )) < 0) {
perror{ "Opening Receive socket" };
return{ -1 );

}
if ((hel_sock = socket (AF_INET, SOCK_DGRAM, 0)) < 0)
{
perror ("Opening helsim socket*);
return(-1);
}

/*******************************************************************/

/* Identify Receive socket as non-blocking */
/*******************************************************************/

opt = 1;

if (fentl(recv_sock,F_SETFL, O_NDELAY)<0) {
perror( “Setting non-blocking Receive socket" );
exit( -1 );

}

if (fcntl (hel_sock,F_SETFL, O_NDELAY) <0)

{
perror(“Setting non-blocking on helsim socket");
exit(-1);

/*******************************************************************/

/* Set up source address to receive from */
/*******************************************************************/

src.sin_family = AF_INET;
src.sin_addr.s_addr = htonl( INADDR_ANY );
src.sin_port = ETH_PORT;

/*******************************************************************/

/* Bind Receive socket */
/*******************************************************************/

bind( recv_sock, (struct sockaddr *) &src, sizeof( src ) );
hel.sin_family = AF_INET;

hel.sin_addr.s_addr = htonl (INADDR_ANY) ;

hel.sin_port = HEL_ETH;
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bind(hel_sock, (struct sockaddr *) &hel, sizeof (hel));
size = sizeof (struct sockaddr);
return (0);

Figure 39. Use of NE Interface Calls by Dynapath Ethernet I/O Procedures
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7. Glossary of Terms and Acronyms

AFTA-Army Fault-Tolerant Architecture-A computer designed for both high reliability and
high throughput. The AFTA is based on the FTPP architecture.

aperiodic tasks-A set of tasks whose iteration rates are unknown or undefined.

ASIC-Application Specific Integrated Circuit-A type of integrated circuit that can be custom
designed by the hardware engineer so that it will perform a particular logic or processing
function and at the same time save circuit board space and power consumption. The advent
of VLSI design techniques has made ASICs a more flexible and practical option for hard-
ware designers.

ATP-Authentication Protocol-A protocol utilized by the BRNP to sign outgoing packets
and to test the authenticity of incoming packets.

ATPG-Automatic Test Pattern Generation-The generation of test vectors directly from a

netlist for verification of device functionality. Test vectors from an ATPG program do not
test the correct functionality of the device; they only test that the device is a correct imple-
mentation of the design as specified by the netlist.

behavioral VHDL is defined to be a VHDL architecture which uses any of the legal VHDL
constructs, including those which do not correspond to possible hardware realizations of
the description (i.e., pure behavioral may not be synthesizeable). A level of description
that specifies a device functionally in terms of output reactions to input stimulus. A behav-
ioral description can also specify the timing relationships of inputs to outputs.

BIT-Built In Test-This is an internal diagnostic testing system that is included as part of the
AFTA design. There are three forms of the BIT-- I-BIT is the initial power-on test system,
M-BIT is for maintenance testing, C-BIT is the continuous in-flight test system.

BRNP-Byzantine Resilient Network Protocol-A network layer protocol which implements
the Byzantine Resilient Virtual Circuit in order to guarantee that all messages are delivered
accurately.

broadcast addressing-A method of station addressing using an identifier that causes all sta-
tions to respond to the specified address.

bypass-The ability to effectively isolate a node from the network without disrupting the
continuity of the network.

Byzantine Resilient-Capable of tolerating Byzantine faults. A Byzantine Resilient system is
capable of handling arbitrarily malfunctioning components that may supply faulty informa-
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tion to other parts of the system thereby causing a spread of faulty information within the
system.

C3-Cluster 3-An FTPP model number. Composed of either 4 or 5 FCRs, 3-40 processors,
1-40 VIDs, simplex, triplex, and quadruplex processor redundancy levels. Previous FTPP
models were C1 (4 FCRs, 16 processors, 4-16 VIDs, simplex, duplex, triplex, and
quadruplex processor redundancy levels) and C2 (4 FCRs, 4 processors, one fixed quad
VID).

cache-A form of memory that is typically much faster and much smaller than main memory.
Through utilization of cache memory, a processor's throughput will be increased. Typi-
cally cache memory acts as a staging area for data; information will be pulled from main
memory and temporarily stored in cache while it undergoes processing.

CDU-Cockpit Display Unit-A cathode ray tube display located in the vehicle cockpit for
display of system status. The CDU may display overall AFTA system status, LRU level
status, or LRM level status.

CID-Communication Identification-A designation assigned to each task which is used for
intertask communication.

class test-A test of the Network Element voting mechanism that requests a non-congruent
message exchange selectively on each channel of a fault masking group.

cluster-An FTPP consisting of 4 or 5 FCRs containing at least one virtual processing site.
Multiple clusters could be connected by a network device (such as a fault-tolerant data bus)
to provide even greater throughput than a single cluster. Most references to an FTPP refer
to a single cluster design.

CMF-Common Mode Fault-A type of malfunction which will cause multiple faults or
complete execution failure within a redundant processing group. Common mode faults
may result from software flaws, hardware bugs, design flaws, massive electrical upsets

etc.

concurrent I/O-Input/Output processes that allow the associated virtual group to perform
other tasks while I/O is collecting data. This allows for greater processor throughput.

CRC-Cyclic Redundancy Check-An error detecting code used in data communications that
allows the unit receiving a message to ensure through binary mathematics that it is the same
message sent by the transmitting unit.

CSMA/CD-Carrier Sense Multiple Access with Collision Detection-A form of media access

control whereby a potential transmitting station will monitor the bus to ensure that it is clear
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before transmission begins. During transmission, the station also monitors the bus to
check for message collisions. If a collision occurs, the message must be re-transmitted.

CT-Configuration Table-A table stored on the Network Element that contains the current
configuration of the system, i.e. which processors are members of which virtual groups.

DAIS-Digital Avionics Instruction Set-A benchmark for measuring processor throughput.

depot test-A set of diagnostic level tests executed outside of the constraints of a real-time
environment with emphasis on the isolation of chip level faults in these components. These
tests would occur at a maintenance repair facility in contrast to the various forms of built-in
testing.

DPRAM-Dual-Port Random Access Memory-The type of memory that occupies the data
segment. It provides a buffer between the NE and the PE; both the NE and the PE may ac-

cess the data segment asynchronously, provided that they do not attempt to access the same
location.

DR-Discrepancy Report-A report that is filed whenever unexpected behavior of the hard-
ware, software, or system is encountered. By recording observable symptoms of the sys-
tem throughout testing, integration, verification and validation, one may better trace and
identify system flaws.

entity-A specific instance of a protocol element in an Open Systems Interconnection layer or
sublayer.

FCR-Fault Containment Region-Usually comprised of a number of line replaceable mod-
ules such as Processing Elements, Network Elements, input/output controller, and power
conditioners. The AFTA is made up of four or five FCR's, and each FCR usually resides
on a single circuit board (with the exception of the power conditioner). An interchangeable
term for the FCR is Line Replaceable Unit or LRU.

FDDI-Fiber Distributed Data Interface-A networking standard developed by the American
National Standards Institute to provide high bandwidth for Local Area Networks.

FDIR-Fault Detection, Identification and Recovery-FDIR software designed for the AFTA
allows it to sustain multiple successive faults by identifying a faulty component and recon-
figuring the AFTA system operation to compensate for the fault.

FIFO-First In First Out-A type of information buffer in which the data that is stored first
chronologically will be the first to be extracted.

FMEA -Failure Modes and Effects Analysis
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FMG-Fauit Masking Group-A logical grouping of three or four processors to enhance the
reliability of critical tasks. The members of an FMG execute the same code with the same
data and periodically exchange messages to ensure that they produce the same outputs.

FTC-Fault Tolerant Clock-A distributed digital phase-locked loop used for synchronization
of AFTA fault containment regions.

FTDB-Fault Tolerant Data Bus-A local area network designed around principles of Byzan-
tine resilience. Its primary objective is to provide an optimal internetworking system be-
tween simplex and redundant processing sites.

FTNP-Fault Tolerant Navigation Processor-The initial ground vehicle application for the

AFTA is for the navigations system in Armored Systems Modemization vehicles.

FTPP-Fault-Tolerant Parallel Processor-A computer designed for both high reliability and
high throughput. The core of the FTPP is the Network Element.

functional reliability-The probability that a given function can be executed because its re-
sources are operational.

function nchronization-In maintaining synchronous operation, the members of a VID
perform a synchronizing act after some sequence of functions has been completed. The se-
quence of functions between the synchronization points is referred to as a frame.

GC-Global Controller-A microcoded finite-state machine used to coordinate the functions
throughout the Network Element.

graceful degradation-Through self-testing, a virtual group may identify a faulty member

and gracefully degrade its redundancy level using a configuration table update message to
eliminate the faulty channel.

I0C-Input/Qutput Controller-These devices connect the AFTA to the outside world, and
they must be compatible with the bus connecting elements of the FCR. They may have a

programmable processor on board to drive the I/O, or they may require off-board proces-
sors for operation.

IPS-Instructions Per Second-The number of machine language instructions that a processor
will execute every second. This measurement is used to reference the speed of the proces-
SOT.

ISO/OSI-Internati ndar anizag n ms Interconnection-A specifica-
tion and model for computer communication networks.
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LAN-Local Area Network-A network topology that interconnects computer systems sepa-
rated by relatively short distances (2-2000 meters). LAN technology is usually based on a

shared medium with no intermediate switching nodes required.

leaf-level-(VHDL) The models at the bottom of the model tree. Leaf-level models in VHDL
are always pure behavioral models.

LERP-Local Exchange Reguest Pattern-A string of bytes describing the current state of the
input and output buffers for each processor in an FCR. The LERP is used to generate the
SERP. Each FCR has a different configuration, therefore the LERPs for each FCR will be
different. For this reason, LERPs must be treated as single-source data.

link-An element in a physical network that provides interconnection between nodes.

LOC-Loss of Control-This will occur as a result of a failure in any flight critical portion of

the Flight Control System. For analysis purposes, LOC will be considered as a total loss
of the vehicle.

Local FDI-Each virtual group will exercise its own fault detection and identification pro-
cesses to monitor failures among its processors. Also, each virtual group may initiate its
own recovery options.

logical addressing-A method of station addressing using an identifier that may select a
group of stations to respond to the specified address.

LRM-Line Replaceable Module-The physical unit for field diagnosis and repair. Typically
it consists of one circuit card assembly with one or more Processing Elements.

LTPB-Linear Token Passing Bus-A media access control method whereby stations pass a
token along a virtual ring from one to another. A station may only transmit when it pos-
sesses the token.

MDC-Minimum Dispatch Complement-This specifies the absolute minimum level of oper-
ability for the AFTA system to be cleared for a sortie.

media access control-The method by which access to the physical network media is limited
to a single node so that communications over the media are undisturbed.

media layer-One or more physical layer media. Multiple media layers are physically and
electrically isolated from each other to the same degree as a fault-containment region in a
fault-tolerant computer. Most traditional LANs use only a single network layer. A Byzan-
tine resilient network usually employs multiple media layers for redundancy.

memory alignment-A process whereby the RAM and registers in each processor of a virtual
group are made congruent as part of the resynchronization of a virtual group.
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mission reliability-Arithmetically speaking, mission reliability is one minus the probability
that failure of the AFTA causes abortion of the mission.

MMC-Minimum Mission Complement-This specifies the minimum level of AFTA oper-
ability for the vehicle to continue its mission.

NDI-Non-Developmental Item

NE-Network Element-The hardware device which provides the connectivity between vir-
tual groups. The primary function of the NE is to exchange and vote packets of data pro-
vided by the processors. The ensemble of Network Elements forms a virtual bus network
to which all virtual groups are connected.

NEID-Network Element ID-The name by which a Network Element is known in the physi-
cal AFTA configuration. An NEID refers to a specific Network Element in the system, i.e.
the same NEID on different FCRs refers to the same Network Element. The NEID is also
used to refer to the FCR in which the referenced Network Element resides. By convention,
letters are used to denote the NEID.

netlist-A list defining interconnections of components. Netlists are typically used for de-
signing printed circuit boards or ASICs.

NIU-Network Interface Unit-The connection between a station and the FTDB

node-An element in a physical network that provides the necessary interface between a sta-
tion and the network media.

nonpreemptible I/O dispatcher-A task on the virtual group that manages the execution of
certain I/O instructions that cannot be interrupted.

packet-A block of data consisting of a header, data, and a trailer exchanged between peer
protocol entities. The term packet is somewhat generic and is applied at all levels of the
protocol hierarchy.

packet-A string of data of fixed or variable length for transmission from one processor to
another through an inter-processor network. A message-passing network handles data in
packets. The term packet is used here to refer to a fixed-size (64 bytes) block of data which
is transmitted by the Network Elements.

PDU-Protocol Data Unit-A fancy name for a packet. PDU is the name used by OSIL.

PE-Processing Element-A hardware device which provides a general or special purpose
processing site. A minimal PE configuration contains a single processor and local memory
(RAM and ROM). PEs may optionally have private I/O, making them a combination PE
and I0C.
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PEID-Processing Element ID-The name by which a Processing Element is known in the
physical AFTA configuration. Each PE in an FCR has a unique PEID. However, the same
PEID may be used by another processor in another FCR. A combination of NEID and
PEID is used to uniquely identify a single Processing Element within a cluster.

physical addressing-A method of station addressing using a unique identifier such that at
most one station responds to the specified address.

PIMA-Portable Intelligent Maintenance Aid-A system resembling a laptop computer which
will initiate the maintenance built in testing (M-BIT), interrogate AFTA for fault informa-

tion logged during a mission, and extract maintenance records for system components.

PMD-Physical layer Medium Dependent-The standard which defines the physical medium
that is used for the data communications channel on a network.

presence test-The polling of various components to determine if each is active and syn-
chronized. The testing may be performed on members of virtual groups or on the virtual
groups themselves.

prmitive-A function or procedure that one entity provides to another. The primitive defini-
tion specifies the inputs, outputs, and data formats for the primitive.

PROM-Programmable Read Only Memory-A form of computer memory that will store a

permanent copy of one or more subroutines specifically intended for use by a particular mi-
croprocessor. PROM's allow for a certain level of hard-wired software control over the
Processor.

quadruplex-A virtual group consisting of four processing sites.

rate group dispatcher-An RG4 task that is responsible for controlling the execution of the

rate group tasks and providing reliable communication between the rate group tasks
throughout the system.

Register Transfer Level (RTL) VHDL-A behavioral format which specifies the functionality
of a block from the standpoint of random combinational logic and/or synchronous regis-
ters. For the purpose of the AFTA NE development, RTL is defined to be synthesizeable
behavioral VHDL, that is, a behavioral VHDL description that is suitable for input to a
synthesis tool.

reprocurement-The act of obtaining new parts to replace parts in an existing system, or to
build additional copies of an existing design.

RG-Rate Group-A set of tasks whose iteration rate is well-defined and whose execution
times do not exceed the iteration frame (the inverse of the iteration rate).
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RISC-Reduced Instruction Set Computer-A type of microprocessor which utilizes a limited
set of machine language instructions to allow for more rapid execution of those instructions
and thus greater throughput for the computer.

RTS-Run Time System

SAVA-Standard Army Vetronics Architecture

sequential I/O-Input/Output processes that require the managing virtual group to completely
supervise the activity. In other words, the virtual group must block itself until the 1/0 is
finished.

SERP-System Exchange Request Pattern-A string of bytes describing the current state of
the input and output buffers for each processor in the system. The SERP is used to deter-
mine if packets can be sent from one virtual group to another. The LERP from each FCR is
exchanged using a source congruency to generate the SERP. Because the SERP originates
from a source congruency exchange, it can be considered congruent throughout all func-
tioning FCRs.

SIFT-Software Implemented Fault Tolerance-System fault tolerance functions achieved
primarily through operating system programming rather than primarily through dedicated
hardware.

simplex-A virtual group consisting of only one processing site.

single-source data-An element of information which originates from a single point. Exam-
ples of single-source data include sensor readings, input values, and syndromes. Single-
source data must be distributed to fault-masking groups using a source congruency ex-
change to maintain Byzantine resilience.

sortie availability-One minus the probability that the vehicle is prevented by the AFTA from
beginning a mission at the desired time.

source congruency-A type of exchange used to distribute data from a single source, such as
an input device, to members of a fault-masking group. The source congruency, which is
also known as a class 2, 2-round exchange, or interactive consistency, is a primary re-
quirement for a Byzantine resilient system.

station-A device connected to a network that can transmit or receive data over the network.
Often a station is a processing site. In the FTDB, a station can be a redundant processing

site.
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structural VHDL-A level of description that specifies a VHDL architecture by defining in-
terconnections of instantiations of VHDL entities . A structural description resembles a
conventional netlist.

syndrome-A bit field indicating the observance of unusual behavior somewhere in the sys-
tem. Syndromes can be used in an attempt to diagnose and repair faults in the system.

System FDI- A process that will coordinate system status and fault information as well as
testing and analyzing shared components.

task migration-The movement of a necessary task from a failed processor to another pro-
cessor within the same fault containment region.

test bench-A model of a test fixture that is used to test a device being designed with VHDL.
The test bench is written in VHDL and provides a non-proprietary way of stimulating and
monitoring a design in a simulator.

testability-The ability to unambiguously ascertain the functionality of each Line Replaceable
Module of the AFTA.

TEF/TA/NOE-Terrain Following/Terrain Avoidance/Nap of the Earth-A typical helicopter

mission application for which the AFTA will be designed.

THT-Token Holding Timer-A method used with token passing media access protocols to
limit the amount of time each station can transmit on the network.

timeout-A value of time used to monitor skew between processors of an FMG. All proces-
sors in an FMG should be synchronized to within one timeout value, so if a processor does
not respond within the timeout period, that processor is considered faulty, and the other

processors will continue uninhibited. Timeouts are necessary on the AFTA to prevent
faulty processors from halting the system.

timestamp-A 32-bit quantity that indicates the relative time within the cluster. The Network
Element places a timestamp in the input info block for each packet successfully delivered to
a virtual group.

TNR-Transient NE Recovery-The procedure by which a Network Element which has suf-

fered a transient fault is reintegrated into the cluster. The first part of TNR is similar to the
ISYNC procedure. TNR also specifies the realignment of the Network Element state.

transient recovery policy-A recovery option whereby the faulty component is immediately
disabled and an attempt is made to reintegrate the component into the system.

triplex-A virtual group consisting of three processing sites.
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validation-The process of demonstrating that an implemented system correctly performs its
intended functions under all reasonably anticipated operational scenarios.

validity-In a Byzantine resilient system, a condition in which all functioning members of a
fault-masking group are guaranteed to possess correct data. The validity condition also
implies the agreement condition.

vehicle reliability-One minus the probability that the vehicle is lost due to failure of the
AFTA.

VGe-virtual group-A grouping of one or more processors to form a virtual (possibly redun-
dant) single processing site. All processors in a virtual group execute the same instruction
stream. If a virtual group has more than one member, those members must reside in differ-
ent FCRs. Virtual groups of 3 or more members are known as fault-masking groups.

VHDL.-VHSIC Hardware Description Language-A language for specifying hardware de-
sign. VHDL designs can be expressed in a behavioral or a structural method. VHDL also
defines a simulation environment and incorporates an intrinsic sense of time.

VHSIC-Very High Speed Integrated Circuit-A Government-funded project to develop
technologies to be applied to new, high speed integrated circuits. The VHSIC Hardware

Description Language (VHDL) was developed under the VHSIC program.

VID-Virtual Identifier-The name by which a virtual group is known to the system. Also,
sometimes used as a synonym for virtual group.

voted message-A message sent by all members of a redundant processing group. This
message type is only used when exact consensus among all redundant members is ex-
pected. This is also known as a Class 1 message.

voter test-A test of the Network Element voting mechanism that seeds non-congruent val-
ues selectively on each channel of a fault masking group.

WAN-Wide Area Network-A network topology that interconnects computer systems sepa-
rated by long distances. WAN systems usually use packet switched technology.

watchdog timer-A simple timekeeper that will monitor operations in both the Processing El-
ements and the Network Elements to keep the hardware and software from wandering into
undesirable states.

working group-The set of FCRs in a cluster which are synchronized and in the operational
phase. An FCR which suffers a fault drops out of the working group. The working group
may attempt to reintegrate the failed FCR into the working group.

WPV-Weight Power Volume-These are physical characteristics used to describe the AFTA.
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